

HydroGEN: STCH Overview

H.N. Dinh, A. Weber, A. McDaniel, R. Boardman,
T. Ogitsu, H. Colon-Mercado
Presenter: Anthony McDaniel, SNL
Date: 6/13/2018
Venue: 2018 DOE Annual Merit Review

Project ID # PD148d

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Lawrence Livermore National Laboratory

Advanced Water-Splitting Materials (AWSM)

AWSM Consortium 6 Core Labs:

<u>Accelerating R&D</u> of innovative materials critical to advanced water splitting technologies for clean, sustainable & low cost H₂ production, including:

Thermochemical and Hybrid Water Splitting Technologies

• Metal cation is redox active element in two-step cycle.

• Sulfur is redox active element in two-step cycle.

Membranes Durability testing Bimetal catalysts Radiative coupling HydroGEN Consortium Sunlight to H₂ Interfaces **Catalys** STH efficienc

Hybrid Sulfur

Portrog Dward: Crosscutting challenge and powerd: C Vard: Crosscutting challen as devel Kooking Outward: Unique materials devel

Thermodynamic tuning HER kinetic tuning Bulk & interface engineering Materials compatibility

Two-Step MO_x

EMN HydroGEN

HydroGEN: Advanced Water Splitting Materials

Comprising more than 80 unique, world-class capabilities/expertise in:

HydroGEN fosters cross-cutting innovation using theory-guided applied materials R&D to advance all emerging water-splitting pathways for hydrogen production

Website: https://www.h2awsm.org/

40 STCH Nodes Available in the Consortium

Impact

• 11 nodes from 5 National Labs supporting 5 STCH projects.

5 Seedling Projects Awarded in FY2018 11 nodes from 5 National Labs supporting projects

PD169

HydroGEN: Advanced Water Splitting Materials

Leveraging HydroGEN Capabilities to Enable Project Success

(S.Lany, NREL)

(D.Ginosar, INL)

(E.Coker, SNL)

(A.McDaniel, SNL)

Computation:

- First Principles Materials Theory for Advanced Water Splitting Pathways
 - Role of charged defects in generating configurational entropy
 - Comp. screen material thermodynamics
- Uncertainty Quantification in Computational Models of Physical Systems
 - (B.Debusschere, SNL)
 - Bayesian statistical uncertainty quantification to assess impact of imperfect knowledge
- Mesoscale Kinetic Modeling of Water Splitting and Corrosion Processes
 (T.W.Heo, LLNL)
 - Model reaction kinetics and phase dynamics

Characterization:

- Development and Evaluation of Catalysts for Harsh Environments
 - Durability and performance @ hi T and low pH
- High-Temperature X-Ray Diffraction (HT-XRD) and Complementary Thermal Analysis
 - in operando XRD, validate structure models
 - Thermal analysis, validate thermo models
- Virtually Accessible Laser Heated Stagnation Flow Reactor for Characterizing Redox Chemistry of
 - Materials Under Extreme Conditions
 Measure reaction kinetics and quantify redox
 performance

Analysis:

- Engineering of Balance of Plant for High-Temperature Systems
 - Solar reactor design and CFD model-based performance analysis
- Techno-Economic Analysis of Hydrogen (G.Saur, NREL) Production
 - H2A analysis of production pathway
- Advanced Water-Splitting Materials Requirements Based on Flowsheet Development and Techno-Economic Analysis (M.Gorensek, SRNL)
 - Conceptual design of solar plant
 - Econ-finance analysis of solar plant

Synthesis:

- High-Throughput Experimental Thin Film Combinatorial Capabilities (A.Zakutayev, NREL)
 - Pulsed laser deposition of compositionallyvaried oxide materials libraries
 - Chemical and physical analysis of oxide films
- Computational and Experimental Tools for Enhanced (D.Ginley, NREL)
 Thermochemical Hydrogen Production
 - Controlled material defect engineering for DFT validation and descriptor testing

Impact

(Z.Ma, NREL)

Example node: SNL

Uncertainty Quantification in Computational Models

Accomplishment

- Derive simplest possible model to fit O₂ chemical potential in solid.
 - Analytically extract material thermodynamics to solve inverse material design problem
- Uncertainty Quantification determines model parameters needed to predict thermodynamic behavior with specified uncertainty.
 - How accurate does the model have to be?
 - How does error propagation impact predictions?

Example node: NREL

First Principles Materials Theory

Computational predictions (capabilities and expertise)

- Oxide thermochemistry
- Defect formation energies
- Defect equilibria
- Electronic structure

CU Boulder

C. Musgrave, A. Holder, S. Millican

Electronic structure of hercynite in DFT and in band gap corrected GW

Basic design principles for STCH water splitting

 Optimal STCH activity by utilizing entropy due to charged defect formation

Colorado School of Mines R. O'Hayre, M. Sanders,

- V. Stevanovic,
- N. Kumar, J. Pan

Ba-Mn-O phase diagram in chemical potential space

Collaboration

POSTER ID:

PD169

PI, Claudio Corgnale, **Greenway Energy** (GWE) Co-PI, John Monnier, University of South Carolina

POSTER ID:

PD169

Accomplishment

- Novel NREL solar cavity receiver design.
 - Direct solar irradiation of SiC receiver achieves higher operating temperature
 - Reduced volume and weight
 - No need for intermediate heat transfer fluid
- Completed preliminary large scale reactor design.
 - CFD model-based analysis
 - Verified effective heat transfer to H₂SO₄ gas
 - Predicted higher system efficiency

Collaboration

POSTER ID:

PD165

150k	•Inorganic Crystal Structure Database (ICSD)
40k	•Ordered stoichiometric compounds
1050	 Perovskites Polymorphs and their spin configurations
•34	•Enthalpy of formation •Material Stability
•?	•Charged oxygen defect formation •Effect of Ce doping
$\bigvee_{?}$	•Promising STCH

PI, Ryan O'Hayre, **Colorado School of Mines** (CSM) Co-PI, Michael Sanders, Colorado School of Mines

	Task 1: Computational	Stephan Lany First Principles Material	s Theory
	 Computational resources (Peregrine) Expertise and guidance on research plan and execution Shared recent paper on charged vacancies Continued assistance to CSM computational team 		The computational resources and expertise provided have been of the utmost importance. This was especially true in the early phase of the project.
	Task 2: Combinatorial	Andriy Zakutayev HTE Thin Film Combina	atorial Capabilities
	 Technical guidance on film deposition Deposition of proof-of-concept and con Characterization of pre and post proce Brought post-doc (Yun Xu) onboard to bottleneck, greatly increasing the num early testing 	strategies mbinatorial library films ssed films alleviate deposition ber of films available for	The combinatorial film deposition capabilities are not available anywhere else and are integral to the screening plan for this project. Project success depends largely on this resource node.
= 850°C - Ceria - BCM - SLMA4664 -	Task 3: Bulk Testing	Anthony McDanie Laser Heated Stagnati	el on Flow Reactor
	 Discussions on durability testing of BC execution Assisted in SFR operation for testing c Main interface between group and pat Group 	M and assisted with of Compound X hway-specific Working	The SFR remains the best STCH test stand available and its continued access helps to not only verify new material performance but gives a reliable baseline for comparing to previously tested materials.

Progress <u>Case Study:</u> High Throughput Computational Materials Measure Screening (CSM Seedling Project) <u>POSTER ID:</u> Measure Screening (CSM Seedling Project)

Searched prospective water splitting perovskite formulations from all possible A-B element pairs of interest.

- Selection criteria based on structural configuration, formation enthalpy, defect formation energy
- Used NREL computational resources or existing databases

Other Notable Accomplishments from Projects

Progress Machine Learning Accelerated Materials Measure Discovery

POSTER ID:

PD166

Accomplishment

Computationally Accelerated Discovery and Experimental Demonstration of High-Performance Materials for Advanced Solar Thermochemical Hydrogen Production

• Machine learned models trained on experimental data make application of theory faster and more reliable.

Progress DFT Enabled Materials Screening and Measure Materials Engineering

POSTER ID:

PD167 Accomplishment

Transformative Materials for High-Efficiency Thermochemical Production of Solar Fuels PI, Christopher Wolverton, Northwestern University

- Rare earth series (RMnO₃) oxygen vacancy formation energy.
 - Energy follows R⁴⁺ octahedral tilt amplitude quadratically
 - Can predict *and* engineer oxygen vacancy formation energy

- High throughput DFT screening of RAM₂O₆ double perovskites.
 - R=rare earth; A= alkaline earth; M=transition metal
- Large number of new stable compounds predicted.

Experimentally screening for redox activity

• Data in Open Quantum Mechanical Database (OQMD) used to assess new double perovskite materials.

POSTER ID:

Progress Measure DFT (SCAN+U) based CALPHAD Model

PD168

Accomplishment

Mixed Ionic Electronic Conducting Quaternary Perovskites: Materials by Design for Solar Thermochemical Hydrogen PI, Ellen Stechel, Arizona State University

Gibbs energy of CeO_{2- δ} in fluorite (F) phase; oxygen chemical potential is the derivative wrt δ ; equilibrium determined by equating oxygen chemical potential to gas phase

$$G_{CeO_{2-\delta}}^{F} = y_{Ce^{4}+}y_{O}G_{Ce^{4+}:O}^{0} + y_{Ce^{3}+}y_{O}G_{Ce^{3+}:O}^{0} + y_{Ce^{4}+}y_{Va}G_{Ce^{4+}:Va}^{0} + y_{Ce^{3}+}y_{Va}G_{Ce^{3+}:Va}^{0} + X_{Ce^{3}+}y_{Va}G_{Ce^{3+}:Va}^{0} + X_{Ce^{3}+}y_{Va}G_{Ce^{3+}:Va}^{0} + Y_{Ce^{3}+}y_{Va}G_{Ce^{3+}:Va}^{0} + Y_{Ce^{3}+}y_{Va}G_{Ce^{3+}:Va}^{0} + Y_{Ce^{3}+}y_{Va}G_{Ce^{3+}:Va}^{0} + Y_{Ce^{3}+}y_{Va}G_{Ce^{3+}:Va}^{0} + Y_{Ce^{3}+}y_{Va}G_{Ce^{3+}:Va}^{0} + Y_{Ce^{3}+}y_{Va}G_{Ce^{3+}:Va}^{0} + Y_{Ce^{3+}}y_{Va}G_{Ce^{3+}:Va}^{0} + Y_{Ce^{3+}}y_{Va}G_{Ce^{3+}}y_{Va}^{0} + Y_{Ce^{3+}}y_{Va}G_{Ce^{3+}}y_{Va}^{0} + Y_{Ce^{3+}}y_{Va}G_{Ce^{3+}}y_{Va}^{0} + Y_{Ce^{3+}}y_{Va}G_{Ce^{3+}}y_{Va}^{0} + Y_{Ce^{3+}}y_{Va}^{0} + Y_{Ce^{3+}}y_{Va}^{0} + Y_{Ce^{3+}}y_{Va}^{0} + Y_{Ce^$$

• Oxygen chemical potential in solid calculated directly using DFT method avoids computational cost associated with modeling entropy effects.

- Collaboration with 2B Team Benchmarking Project.
- Node feedback on questionnaire & draft test framework.
 - Defining: baseline materials sets, testing protocols
- All HydroGEN STCH node capabilities were assessed for AWS technology relevance and readiness level.
- STCH data metadata definitions in development.
- Large number of STCH datasets uploaded to hub.
 - Designing custom APIs to facilitate error-free, auto-uploading

- Leverage HydroGEN Nodes at the labs to enable successful Go/No-Go of Phase 1 projects.
 - Validate computational approach and predictive power of theory
 - Demonstrate high-throughput experimental approach to oxide discovery
 - Demonstrate enhanced material performance that validates predictions
- Enable research in Phase 2 work for some projects and enable new seedling projects.
- Work with the 2B team and STCH working group to establish testing protocols and benchmarks.
- Utilize data hub for increased communication, collaboration, generalized learnings, and making digital data public.

- Developing and validating tools for accelerated materials discovery are major seedling project themes.
 - Computational material science proving effective
 - Machine learned models make application of theory faster
 - DFT-CALPHAD model accurately predicts oxygen chemical potential in CeO₂
- Supporting 5 FOA projects with 11 nodes and 11 Pls.
 - DFT modeling, materials characterization, synthesis, analysis, design
 - Personnel exchange: PIs and graduate students visit the labs
 - Collaboration: Node PIs meet regularly with projects
- Working closely with the project participants to advance knowledge and utilize capabilities and the data hub.
- Future work will include continuing to enable the projects technical progress and develop & utilize lab core capabilities.

Acknowledgements

Energy Materials Network

U.S. Department of Energy

Authors	Node Pls	Research Teams
Anthony McDaniel Huyen Dinh	Eric Coker Bert Debusschere David Gipley	Greenway Energy LLC Engineering consultant in Aiken County, South Carolina
STCH Project Leads	Daniel Ginosar Max Gorensek Tae Wook Heo Stephan Lany	Northwestern
Claudio Corgnale Charles Musgrave Ryan O'Hayre Ellen Stechel Chris Wolverton	Zhiwen Ma Anthony McDaniel Genevieve Saur Andriy Zakutayev	INOrthWestern University

Lawrence Livermore National Laboratory

