

2018 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting

Cryogenically Flexible, Low Permeability H₂ Delivery Hose

P. I.: Dr. Jennifer Lalli, Chief Development Officer NanoSonic, Inc. 6/14/2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID # PD149

Overview

Timeline

- Project Start Date: 7/31/2017
- Project End Date: 7/30/2019

Budget

- FY13 DOE Ph I Funding: \$150,000
- FY14 DOE Ph II Funding: \$1,000,000
- FY17 DOE Ph IIB Funding:
- Total DOE Project Value: \$2,150,000

Barriers

- Reliability and Cost of Gaseous H₂ Compression
- Reliability and Cost of Liquid H₂ Pumping
- Eliminate H₂ Embrittlement, Increase Durability
- Lack of Fittings for New High Pressure Hoses

Partners

- CSA Group
- NREL
- PNNL
- Cardinal Rubber & Seal
- LifeGuard Technologies
- Shell, Tatsuno, and WEH
- Giles County Government

Relevance:

Develop a H₂ Hose for Fuel Cell Vehicles

Objectives:

- Flexible: H₂ hose to enable delivery < \$2/gge
- Rugged: -50 °C and 875 bar for H70 service
- Reliable and safe: 70 fills/day, > 2 years

Impact in April 2017 – April 2018:

- Produced: Low T_g, Low H₂ Permeability, Fiber Reinforced Hose with High Pressure Fittings
- Demonstrated: Hydrostatic Burst Strength > 33,000 psi for H35 Service
- Goal: Metal Free Hose Design and Custom Fitting to Enable Long-term H70 Service 3

Current Approach to Hoses up to 20' Long: Filament Wound Metal-free H₂ Hose

NanoSonic Flexible Composite Hoses Exhibit Hydrostatic Burst Strength > 33,000 psi

Tested at RTP at CSA Group per Hydrostatic Strength (section 2.4) of ANSI/CSA HGV 4.2-2013 *Standard for hoses for compressed hydrogen fuel stations, dispensers and vehicle fuel systems*. Requires a 1 min hold without burst or visible loss of fluid at a hydrostatic pressure of four (4) times the manufacturers specified maximum allowable working pressure (MAWP). Up to a 10,000 PSI MAWP hose assembly.

Approach: Project Phases and Selected Milestones

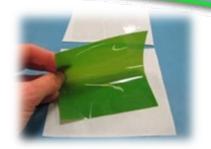
Evaluate FY17 Q4 critical performance metrics, fittings, partners for deployable design

Qualify FY18 Q3-Q4 H70 hose with OEM's dispenser / nozzle to assess service life (~2 years)

Putting nanotechnology to work

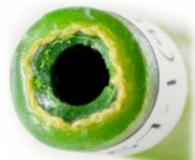
<u>Test</u> FY18 Q1-Q2 hose/fittings with H₂ via TTS (NS), robotic fill (NREL), and DMA / tribology (PNNL)

Deploy FY19 Q2 H70/H35 hoses at H₂ stations



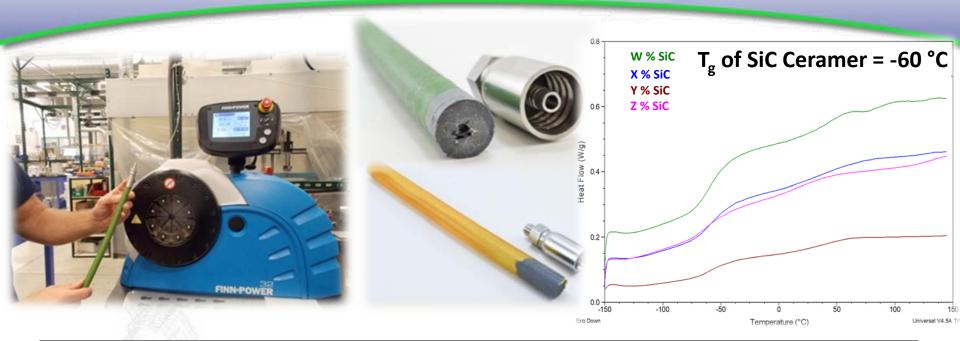
Critical Criteria

- Surpass 3500 Bar hydrostatic burst strength (> 50,763 psi) held for 1 min
- Survive 875 Bar pressure cycle at (50,000x at -50F and 50,000x at 85F)
- No contaminant leaching, Competitive cost, mechanical durability, and environmental lifetime


Accomplishments in Design Evolution of the High Pressure Hose

Hydrogen Permeance by ASTM D 1434

Sample No.	0.29
Set 4 - Lot # LB199-119	0.22
Hydrogen - 10A, 10B, 10C	$AV = \frac{0.20}{0.24 \pm 0.04}$
Hydrogen Cold -	0.36
10A, 10B, 10C	0.35
	0.20
	AV = 0.31 ± 0.09



The ideal burst pressure was estimated for the single braid reinforced hoses to be ~ 2560 bar using Barlow's Formula: $P = 2 s t / (d_o SF)$ Where, P = max. working pressure (psig), s = material strength (psi) = 10.2 x 10⁶ (Aramid fiber); yield strength = 522,000 psi. t = wall thickness (in) = 0.02" (Braid thickness), $d_o = outside$ diameter (in) = 0.563" (9/16"), SF = safety factor (in general 1.5 to 10) = 1; Calculated maximum working Pressure 37,129 psi (2560 Bar or 256 MPa) 6

Accomplishments in Manufacturing

Fittings Crimped In-House with Polymer Derived Ceramer Coupling Agent

Test ID	Hose	Length (inch)	Fitting Manufacturer	Fitting OD	Ceramer in Hose	Ceramer at Fitting	Burst Pressure (psi)
WH208-8C	А	17	1	proprietary	x		6446
WH208-8D	А	17	1	proprietary	x	x	8334
WH208-8E	А	17	2	proprietary	x		4304
WH208-8F	А	17	2	proprietary	x	x	7016
WH208-9A	В	17	1	proprietary			52959
WH208-9B	В	17	1	proprietary		x	58440
WH208-9C	В	17	2	proprietary			9635
WH208-9D	В	17	2	proprietary		x	26136

Ceramer increases burst strength by ~ 25% as a coupling agent

Accomplishments in Burst Strength NanoSonic Carbon Fiber Hose = 31,421 psi

100 10											
HOSE MFG	HOSE ID	Fitting Mfg	ACTUAL NIPPLE OD (mm)	NIPPLE	Hose O.D (mm) Ceramei	Wrap Thickness (mn) Wraps	Wrap Angle	Burst Strength (ps	average) weight (g
	7-1	Swagelok	14.9	2.4	12.5	yes	3.0	3	54	19,237	
	7-2	Swagelok	15.3	3.2	12.1	yes	2.6	3	54	26,614	
	7-3	Swagelok	15.8	3.8	12.0	yes	2.5	3	54	25380	
	8A-1	Swagelok	16.1	2.5	13.6	yes	4.1	4	54	31,421	
	8A-2	Swagelok	16.5	3.4	13.1	yes	3.6	4	54	30,475	
	8A-3	Swagelok	17.0	4.1	12.9	yes	3.4	4	54	16357	200
NanoSonic	8B-1	Swagelok	15.2	2.0	13.2	yes	3.7	4	54	22,591	
Nanosonic	8B-2	Swagelok	15.2	2.3	12.9	yes	3.4	4	54	30,576	
	8B-3	Swagelok	16.1	3.4	12.7	yes	3.2	4	54	28063	
	13-1	Swagelok	15.6	2.4	13.2	yes	3.7	4 total	3 at 54 - 1 at hoop	24,916	
	13-2	Swagelok	16.0	3.3	12.7	yes	3.2	4 total	3 at 54 - 1 at hoop	24,273	
	13-3	Swagelok	16.4	3.5	12.9	yes	3.4	4 total		23522	
	41A	Swagelok	16.1	3.2	12.9	yes	NA	NA	NA	21,191	
	418	Swagelok	16.1	3.2	12.9	yes	NA	NA	NA	10,096	
	WH208-9A2089	Swagelok	15.9	3.0	12.9	yes	NA	NA	NA	52,959	250
SpirStar	WH208-982089	DHH	15.9	3.0	12.9	no	NA	NA	NA	9,635	- 230
spirstar	WH208-9C2089	Swagelok	15.9	3.0	12.9	yes	NA	NA	NA	58,449	
	WH208-9D2089	DHH	15.9	3.0	12.9	no	NA	NA	NA	26136	

Composite: ~ 10,000 psi Core Alone: ~ 3,000 psi CryoHose: > 30,000 psi

WH 208-98

Failure Mode for NanoSonic Hose is at the Fitting – Slippage Failure Mode for Metal Wrapped Hose is – Hose Burst

Accomplishments in Pressure Cycle Testing: 52,000x at 12,000 psi (-40 °C to 85 °C)

Pressure Cycle Test (section 2.17) of ANSI/CSA HGV 4.2-2013:

- 50,000 cycles at 12,000 psi (827 Bar) at -40°C and
- 50,000 cycles at 12,000 psi (827 Bar) at 85°C

Down-selected filament wound composite survived:
50,000 cycles at 12,000 psi (827 Bar) at -40°C and
1,988 cycles at 12,000 psi (827 Bar) at 85°C

Failure Mode for NanoSonic Hose is at the Fitting – Slippage

Accomplishments with Partners Cardinal Rubber & Seal Swaged Fittings

Test Results

High Pressure Test Results

		_							
Customer:					nc	M	fg. Part #:		
			Test Hose			Description:			
Order Quantity: 1						Measured	Intervals:	1	
			_	1/2017			Time:	10:48:17	AM
		ator:					Pressure:		
_	Test 1	Time:	1			Minimum	Pressure:	14000	
_	1	2	2	3	4	5	6	7	. 8
1	19463	0	_	0	0	0	0	0	0
2	0	0		0	0	0	0	0	0
3	0	0		0	0	0	0	0	0
4	0	0		0	0	0	0	0	0
5	0	0		0	0	0	0	0	0
6	0 .	0		0	0	0	0	0	0
7	0	0		0	0	0	0	0	0
8	0	0		0	0	0	0	0	0
9	0	0		0	0	0	0	0	0
10	0	0		0	0	0	0	0	0
11	0	0		0	0	0	0	0	0
12	0	0		0	0	0	0	0	0
13	0	0		0	0	0	0	0	0
14	0	0		0	0	0	0	0	0
15	0	0		0	0	0	0	0	0
16	0	0		0	0	0	0	0	0
17	0	0		0	0	0	0	0	0
18	0	0	-	0	0	0	0	0	0
19	0	0		0	0	0	0	0	0
20	0	0		0	0	0	0	0	0

Fittings Swaged at Cardinal Passed High Pressure Testing

Accomplishments with Techsburg Manufacturing

Engineering or Manufacturing, Techsburg is Your Partner in Creation

TECHSBURG

Engineering Services Division

Manufacturing Division

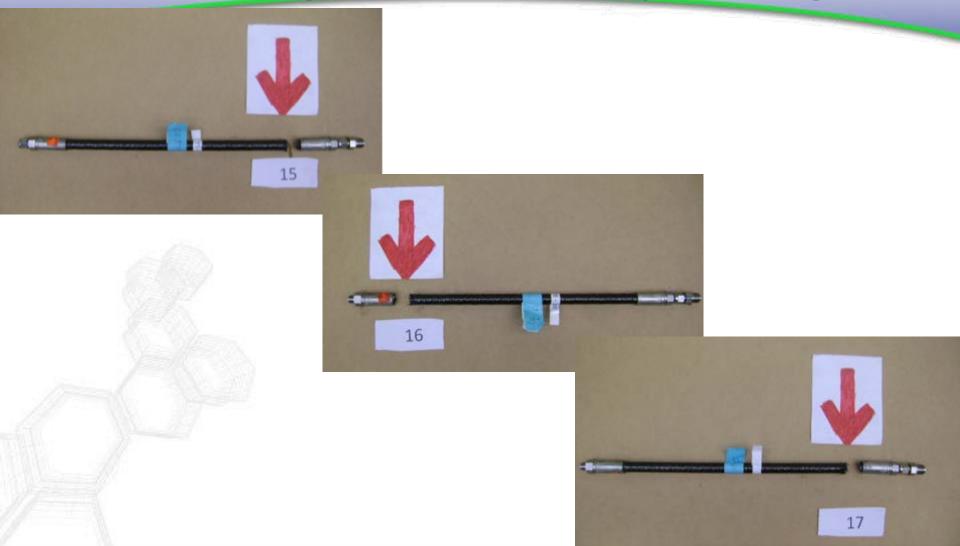
2-piece fitting any metal, starting at \$4/part

Accomplishments in Scaling

Scaled Hoses to 3m lengths using filament winding process in-house

Accomplishments in Burst Strength

	Sample ID	Sample Length (in)	Hose ID (mm)	Fitting Type	Burst	Leaked	Before	After	an a
	1 - 2/8/18	~14"	1/2"	Swaged	18,462			<u> </u>	
	2 - 2/8/18	~14"	1/2"	Swaged	20,971				
	3 - 2/8/18	~14"	1/2"	Swaged		11,526			
	4 - 2/8/18	~14"	1/4"	Swaged	28,192			¥	
	5 - 2/8/18	~14"	1/4"	Swaged	28,809				
	6 - 2/8/18	~14"	1/4"	Swaged	28,989				
	7 - 2/8/18	14"	1/4"	Swaged		12,365	- 1		
-	8 - 2/8/18	14"	1/4"	Swaged	23,853				¢.2
	9 - 2/8/18	14"	1/4"	Swaged	26,236		-		
ļ	10 - 2/8/18	14"	1/4"	Swaged		12,739			


Burst Strength Values > 28,000 psi, and failure through fitting failure or at edge

Accomplishments in Burst Strength

J	Sample ID	Sample Length (in)	Hose ID (mm)	Fitting Type	Burst	Leaked	Before	After
	11 - 2/8/18	14"	1/4"	Swagelok	21,681			
	12 - 2/8/18	14"	1/4"	Swagelok	17,995			
	13 - 2/8/18	14"	1/4"	Swagelok	20,485			¥
	14 - 2/8/18	14"	1/4"	Swagelok	18,236			
	15 - 2/8/18	14"	1/4"	Swagelok	33,134			
	16 - 2/8/18	14"	1/4"	Swagelok	33,055			
N.C.	17 - 2/8/18	14"	1/4"	Swagelok	31,535			

Burst Strength Values > 33,000 psi, and failure consistently at edge

Challenges with Fittings All Fittings Fail at Crimped Edge

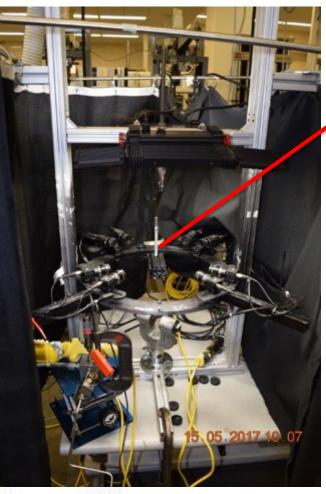
Fittings Fail due to Under-Crimping (Slippage) or Over-Crimping (Core Defect) at Edges

Econo-Technical Accomplishments Cost

- NanoSonic can Produce 16 H₂ hoses / day, 3-m in length, at ~\$600 / Hose with Fittings
- ~40% reduction over current hose
- The 4 Spool Filament Winder Enables Multiple Fiber Functionality and Reinforcement within High Performance Custom Polymer Matrix Resins

Phase II B

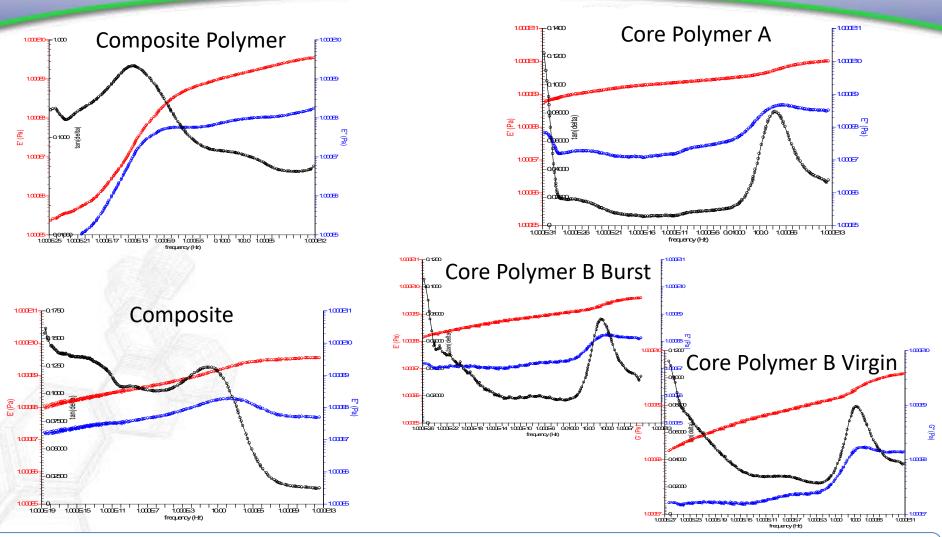
Commercialization and Collaborations


Future Work

H₂ Service and Durability Testing at PNNL and NREL

Any proposed future work is subject to change based on funding levels

DIC System for multi-strain imaging during tube burst test


Pacific Northwest

Future Work

Compare DMA TTS in air vs. H_2 (at PNNL) to assess performance over 2 years

- NanoSonic DMA TTS data for polymer core, polymer composite, composite in air
- Hose Core Polymers analyzed before and after hydrostatic burst testing

Remaining Challenges and Barriers:

Fitted Hose with Commercial H₂ Hose Safety Adapters Qualification and Deployment

- Challenge: Deployment date of FY19 Q1 because of fitting construction
- Resolution: Partnered with machinist to produce durable tailored high pressure fittings
- Benefit: Sell hose and fitting as a complete qualified set
- Benefit: Investigating new fitting materials and designs for the broader hose market

Project Summary

- <u>Relevance</u>: Durable and cost effective H₂ delivery hose that resists H₂ embrittlement, survives 25,550 fills/year for H70 service, cycled at pressures > than 875 bar over a range of 50 °C to 90 °C. A single qualified hose exists.
- <u>Approach</u>: NanoSonic's all polymer new class D hydrogen dispensing hose, for use on H70 station side applications, is chemically engineered to survive 51,240 fills, resist H₂ embrittlement, survive Joule-Thompson effect, and endure mechanical fatigue at the pump. Innovative SiC ceramer adhesive is under development to enhance fitting durability

<u>Technical Accomplishments</u>:

- Demonstrated hydrostatic burst strength > 33,000 psi
- Demonstrated 50,000 cycles at -40F / 12,000 psi, and ~ 2,000 cycles at +85F / 12,000 psi
- Failure for hydrostatic burst and pressure impulse each hose is at crimped fitting edge
- Developing fitting with manufacturer and partnered with H₂ safety fitting expert
- **Proposed Future Research**: Evaluate hose under H₂ service conditions at NREL, PNNL, and at partner/distributor test facilities. Present H₂ hose partners (dispensing stations and fittings/breakaway/fueling nozzle OEMs) with integration and cost.

Questions & Acknowledgements

This material is based upon work supported by the Department of Energy under Award No. DE-SC0010162

Contact: Jennifer Lalli (540) 626-6266 jhlalli@nanosonic.com

DOE-EERE DOE Fuel Cell Technologies Office: Neha Rustagi, James Vickers, Sunita Satyapal, Charles James, Grace Ordaz, Laura Hill, and Erika Gupta

Phase II Integrators and Testing Facilities