

Scalable Elastomeric Membranes for Alkaline Water Electrolysis

Yu Seung Kim Los Alamos National Laboratory 6/13/2018

Project ID # PD159

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Lawrence Livermore National Laboratory

Project Partners

PIYu Seung Kim,Co-PIsChulsung Bae,Kathy Ayers,

Los Alamos National Laboratory Rensselaer Polytech Institute Proton Onsite

Project Vision

Preparing durable and economically-affordable alkaline hydroxide conducting materials based on SEBS and demonstrating the performance and durability in alkaline membrane-based water electrolysis

Project Impact

This technology will bring the alkaline membranebased water electrolysis technology to a maturity level at which it can be further developed by industry for commercialization.

Award #	EE000XXXX
Start/End Date	10/01/2017 - 09/30/2018
Year 1 Funding*	\$250,000

* this amount does not cover support for HydroGEN resources leveraged by the project (which is provided separately by DOE) HydroGEN: Advanced Water Splitting Materials

Project Motivation

Los Alamos team (in collaboration with Sandia National Laboratories and Proton Onsite) demonstrated > 2000 h alkaline electrolyzer durability using polyaromatic electrolytes in 2013. In this project, we are aiming to develop economically viable elastomeric ionomers having at lease equivalent conductivity with much improved mechanical properties.

Barriers

- Alkaline stability
- Hydroxide conductivity
- Mechanical properties

Key Impact

Metric	State of the Art	Expected Advance
Hydroxide conductivity (mS/cm)	30-40	40
% Loss conductivity after 300 h, 1 M NaOH, 80 °C	30	< 5
Tensile toughness (MPa × % elongation)	2000	3000

Partnerships

- Yu Seung Kim (LANL): Project managing, ionomer preparation, polymer characterization
- Chulsung Bae (RPI): Polymer synthesis
 & characterization
- Sangwoo Lee (RPI): Polymer design & characterization
- Kathy Ayers (Proton): Alkaline membrane electrolyzer testing

Approach-Innovation

Styrene-Ethylene-Butylene-Styrene Block Copolymer

- Robust polymer backbone
- \rightarrow No aryl-ether polymer backbone provides chemical stability.
- Block copolymer architecture
- \rightarrow Soft block provides toughness under dry & wet conditions.
- Cheap base polymer
- \rightarrow Various SEBS are commercially available on the market.

Conventional Chloromethylation

- Low level of functionalization & gelation
- Only allow benzyl ammonium functionalization
- Toxic and expensive reagents

Approach- AEM Synthesis

Metal-catalyzed coupling (M-Cat)

- Good control of IEC (1.5 meq./g)
- High hydroxide conductivity (40 mS/cm)
- Excellent chemical stability (1 M NaOH at 80 °C for 4 weeks)
- Not practical because of expensive metal catalysts

Macromolecules, **48**, 7085 (2015)

Acid catalyzed (Proposed)

- IEC, conductivity and chemical stability are similar to that from metal-catalyzed coupling
- Multi-cation structure is feasible
- No use of expensive metal catalysts

Scope of Work & Tech Validation

Scope of Work

- Prepare high molecular weight quaternized SEBS via acid catalyzed Friedel-Craft reaction (1st year).
- Prepare soluble quaternized styrene ionomers for catalyst dispersion (1st year).

Tech Validation

- Proton Onsite will demonstrate best performance and durability of alkaline electrolyzer using SEBS based polymer electrolytes (2nd & 3rd year).
- Membrane properties will validated by LBNL (EMN node) using scattering techniques and thin film characterizations.
- Baseline performance of alkaline membrane based LTE will be validated from modeling works at LBNL.

Benefits of alkaline membrane water electrolyzer

- Lowering capital cost by removing the high noble metal loading requirements.
- Using relatively cheap cell hardware under high pH conditions.
- High pressure operation is possible with less cross-permeation.
- This project directly deals with novel membrane fabrication and development of low temperature electrolysis
- Current Node utilization: Modeling and electrochemical characterization.

Membrane Synthesis

HydroGEN: Advanced Water Splitting Materials

Di-Quaternized SEBS (Di-QA)

Cross-linked SEBS (X-link)

Membrane Properties

- AEM properties are controlled by IEC and tailoring chemical structure.
- QA and Di-QA SEBS meet the hydroxide conductivity go-no-go decision criteria.
- The hydroxide conductivity of semi-crystalline SEBS is approaching the go-no-go decision criteria → need further optimization.

Samples	Titration IEC	(mequiv/g)ª	OH ⁻ σ (mS/cm) 60 °C ^ь		
Samples	0 h	500 h ^c	0 h	500 h°	
SEBS-C ₃ -TMA-0.8	1.55	1.50	72	70	
XL100-SEBS-C ₅ -TMA-0.7	1.29	1.29	54	52	

^aMohr titration. ^bOH⁻ σ in water under Ar. ^c1 M NaOH aq. at 80 °C.

Poly(vinylbenzyl chloride), MW 20-50k

IEC chart	(mm	ol/g)
-----------	-----	-------

lonic group (x)	100%	75%	50%	25%
TMA	5.18	3.60	2.23	1.04
TEA	4.26	3.13	2.04	1.00
N2	5.92	4.73	3.37	1.81

* The rest of the percentage (y) is FPEA

'n)	Polymer	IEC (mmol/g)	H ₂ O	MeOH	EtOH	<i>j</i> -PrOH	Ethylene glycol	CH ³ CN	Acetone	THF	DMSO
l- foi	TMA-75	3.60	++	++	+	±	+	-	-	_	++
y (C	TMA-50	2.23	_	++	+	+	+	_	_	_	+
billity	TEA-75	3.13	+	++	+	+	+	_	_	_	+
solu	TEA-50	2.04	_	++	+	+∆	+	_	_	_	+
0)	N2-50	3.37	+	++	+	_	+	_	_	_	+∆
	N2-25	1.81	-	++	+	_	+	_	-	_	+∆
Ion exchange using dialysis membranes and 1M NaOH, washed with DI water and dried under vacuum at room temperature											
lity rm)	TMA-50	2.23	_	±	±		±				-
lubil 1- foi	TEA-50	2.04	_	±	±		±				_
So (OF	N2-25	1.81	_	+△	+∆		+∆				+

++: soluble instantly; +: soluble at rt; -: insoluble; ±: partially soluble/swollen; +∆: soluble when heated and sonicated

Outlook and Projected Outcomes

Milestone progress

Description	Criteria	Planned date	Progress
Baseline SEBS synthesis	5 × 5 inch, 3 membranes (IEC > 1.5 meq.g)	12/31/17	100% (12/19/2017)
Chemical stability (baseline polymer)	< 5% σ loss after 300 h, 1 M NaOH, 80 °C	3/31/18	100% (3% σ loss after 500 h, 1 M NaOH, 80 °C)
Deliver SES copolymer	IEC > 1.8 meq./g	6/30/18	60% (made 1.5 meq/g)
Conductivity & stability assessment	40 mS cm ⁻¹ at 30 °C, <5% loss σ after 300 h 1 M NaOH, 80 °C	9/30/18	50% (met conductivity target)

Go-no-Go Decision (9/30/2018)

	Description Criteria	Current status
•	$ σ: 40 \text{ mS cm}^{-1} \text{ at} $ 30°C, < 5% σ loss after 300 h 1 M NaOH, 80°C, Elongation > 200%, etrapeth > 10 MPa et	Three SEBS types (QA, Di-QA and semi-crystalline) met the conductivity target. Alkaline stability test for the SEBS copolymers look promising and need to complete in the next three months. Initial mechanical test assessment indicates all SEBS copolymers prepared have low strength (~ 5 MPa). LANL
	50° C.	mechanical properties.

Collaboration: EMN node: LBNL

Water electrolysis modeling provides the insight on AEM design.

Adam Weber- LBNL

Collaboration: EMN node: LBNL

- WAXS data indicates that the crystallinity of membrane increases with PS content.
- Degree of crystallinity impacts membrane water uptake.
- Increasing PS content may lead better mechanical properties.

Collaboration: Interactions with broader HydroGEN research community

- LANL and RPI have provided membrane benchmarking/protocol suggestions to Proton Onsite including conductivity and membrane stability data.
- LANL has worked closely with Sandia National Laboratories in order to improve chemical stability of benchmark anion exchange membranes.
- LANL, RPI and Proton Onsite participated the ARPA-E IONICS review meeting on April 10, 2018 to discuss AEM benchmark membrane production and test protocols for water electrolyzers.
- LANL has discussed a possible collaboration with NREL team for testing membrane based water electrolyzers.

- Optimize the chemical structures of SEBS to balance conductivity and mechanical properties.
- Complete the alkaline stability of SEBS assessment.
- Down select alkaline ionomers based on microelectrode measurement.
- *In-situ* ASR measurement and stability test under electrolyzer mode.

Alkaline membrane electrolyzer setup (3/30/18)

AEM microelectrode

- Elastomeric, alkaline-stable SEBS anion exchange membranes for water electrolysis have been successfully synthesized via acid catalyzed polymerization (without using metal catalyst).
- The newly synthesized SEBS membranes possess excellent hydroxide conductivity, good alkaline stability and promising mechanical properties.
- Soluble polystyrene-based ionomeric dispersion have been successfully prepared for MEA fabrication.
- Further structural optimization of these membranes and ionomers is on going.

Technical Back-Up Slides

Synthesize Acid Catalyzed SEBS

HydroGEN: Advanced Water Splitting Materials

Technical Back-up Slide #1

Synthesis of Semi-crystalline SEBS

Samples	IEC (meq./g)		OH-	In-plane	Cl ⁻ σ (mS/cm)			OH ⁻ σ (mS/cm)		
Samples	¹ H NMR	Titration	(wt %)	OH ⁻ (%)	30°C	60°C	80°C	30°C	60°C	80°C
SES20-C ₅ -TMA- 0.9	0.89	0.87	35	17	8	14	20	25	42	53
SES25-C ₅ -TMA- 1.4	1.37	1.41	80	23	12	21	24	36	56	70

HydroGEN: Advanced Water Splitting Materials

Technical Back-up Slide #2

Synthesis Cross-linked SEBS

Technical Back-up Slide #3

Device Performance (Fuel Cell Mode)

- SEBS AEM holds backpressure to 30 psi at 60 °C.
- Cell HFR is ~ 0.15 Ω cm² for 50 micron thick membrane (equivalent to 33 mS/cm) → ex situ measurement: 33 mS/cm at 60 °C.
- AEM dehydration occurred at high current density in fuel cell mode.