

Efficient Solar Water Splitting with 5,000 Hours Stability Using Earth-abundant Catalysts and Durable Layered 2D Perovskites

Aditya D. Mohite Los Alamos National Laboratory June 13, 2018

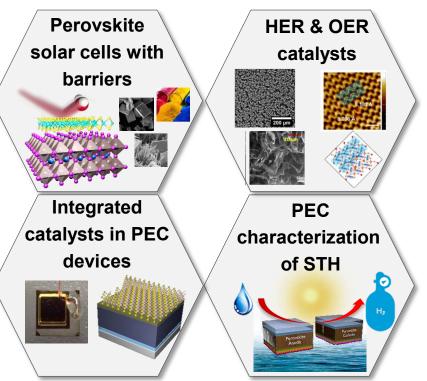
Project ID #164

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Lawrence Livermore National Laboratory

Project Overview

Aditya Mohite, LANL Manish Chhowalla, Rutgers University Gautam Gupta, Univ. of Louisville EMN Partners: LBNL and NREL


Project Vision

Combine high-efficiency low-cost perovskite solar cells with HER and OER catalysts made from earth abundant materials to achieve STH of >15% efficiency with 5000 hours stability

Project Impact

Develop a first of its kind durable and efficient water splitting system for H₂ production using low-cost abundant materials

Start Date	10/01/2017
Yr 1 End Date	10/01/2018
Project End Date	TBD
Total DOE Share	\$994,305
Total Cost Share	\$116,804
Year 1 DOE Funding*	\$250,000

* this amount does not cover support for HydroGEN resources leveraged by the project (which is provided separately by DOE) HydroGEN: Advanced Water Splitting Materials

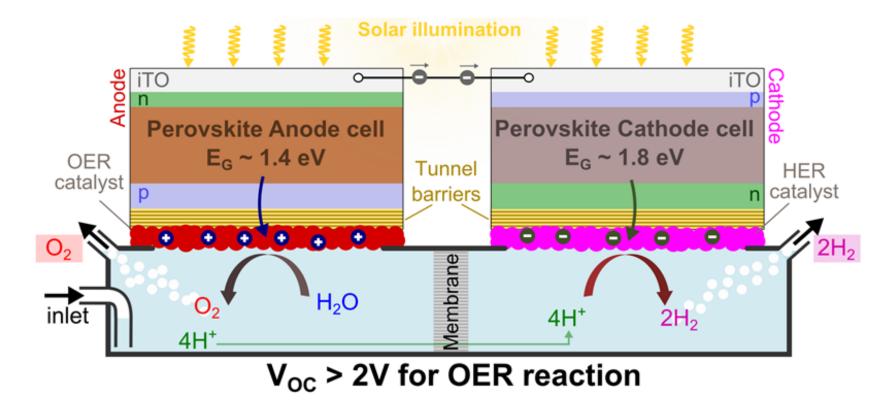
Approach-Summary

Project Motivation

- Pioneering breakthroughs on highefficiency perovskite solar cells (Science 2015, Nature 2016, Science 2017, Science 2018)
- Seminal work on using low-cost, earth abundant materials for HER & OER catalysts (Nature Mat. 2014, Nature Mat. 2016, Nature Comm. 2016, Science 2017)
- Combine these to develop a disruptive low-cost PEC platform that would be a paradigm shift from state-of-the-art

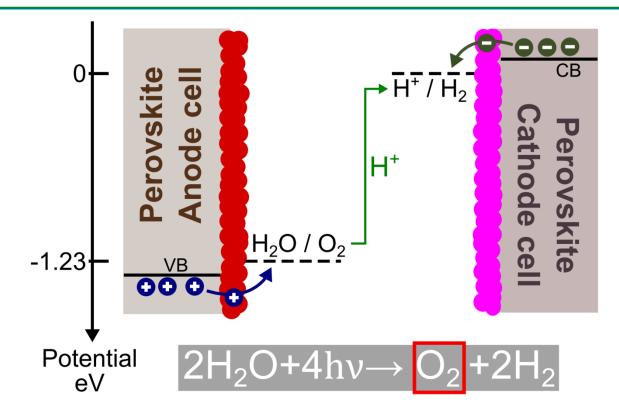
Barriers

- AE Materials efficiency Bulk & interface AF Materials durability – Bulk & interface Al Auxiliary materials
- AJ Synthesis & manufacturing AG Integrated device configurations


Metric	State of the Art	Expected Advance
STH Efficiency	12-15% on III-V based PECs	5-10% on perovskite based PEC
STABILITY	80 hours (III-V based PEC) (No report for perovskite PEC)	>100 hours Perovskite-based PEC
COST	>\$2/kg	<\$2/kg

Partnerships

- Rutgers University Manish Chhowalla
- Univ. of Louisville Gautam Gupta
 - HER and OER catalysts on carbon platforms and their stability
- LBNL EMN Node Nemanja Danilovic, Francesca Toma & Adam Weber
 - PEC testing and interface
 - Degradation characterization
 - Benchmarking PEC performance
- ✤ NREL EMN Node Genevieve Saur
 - Techno economic analysis


Approach-Innovation

- Innovative PEC device design for optimal collection of sunlight using tandem perovskite solar cells in series.
- ✤ Design of tunnel barriers for >20% perovskite solar cells with 1000 hrs stability in operation (<10% V_{oc} degradation).

Approach-Innovation

- Synthesis of perovskite materials with optimal optical and electronic properties for water splitting: bandgap tunability, energy level alignment, work functions, transport properties
- HER and OER catalysts made from earth abundant materials (precious metal free).

HydroGEN: Advanced Water Splitting Materials

Long term goals

Demonstrate a disruptive PEC technology with >5000 hours of operation by interfacing stable hybrid perovskites with HER and OER catalysts with 12% STH efficiency to produce hydrogen for <\$2/kg

Specific to year 1

- Demonstrate band-gap tunability from 1.5 to 2.0 eV with the appropriate band alignments
- Demonstrate photocathode and photoanodes using hybrid perovskites with standard catalysts (with EMN Node LBNL)
- Demonstrate first of its kind photocathode and photoanode with 1000 hours of stability

Relevance to DOE Hydrogen & Fuel Cell Program

AE Materials efficiency – Develop hybrid perovskite based semiconductors with a tunable band-gap from 1.5 eV to 2 eV with desired band alignment for HER and OER AF Materials durability – Develop perovskite photoabsorbers and catalysts that are intrinsically durable under operating conditions thus extending lifetime Al Auxiliary materials – Develop barrier strategies using layered materials for protecting the hybrid perovskites from degradation in aqueous media AJ Synthesis & manufacturing – Develop strategies that allow for large-scale production of materials such a solution processing based approaches, blading, slot die, production of catalysts in milli secs

AG Integrated device configurations – Develop strategies for integration of perovskite photocell with HER and OER catalysts with multiple barriers and optimal light absorption

No	Task/ Subtask	Duratio n (m)	2017 2018 2019 1 2 3 4 1 2 3 4		
T 1	2D perovskite PVs with barriers	18	M1.1 M1.2→M1.3 M1.4		
S 1	Selection of materials from first Principle	6			
S2	Fabrication of 2D perovskite PV cell with >15% efficiency	12	↓ G1		
S3	Deposition of moisture resistant barriers on PVs	9			
S4	Technology tests of durability and humidity	9			
T2	HER and OER Catalysts	18	M2.1 M2.2 M2.3		
S1	Synthesis of HER Catalysts on carbon supports	18			
S2	Synthesis of OER catalysts nanosheets	18			
S3	Electrochemical and Spectroscopy	18			
T3	Integrated catalysts in PEC devices	9	M3		
	HER and OER catalysts integrated in perovskites photocells	9			
T4	PEC characterization of STH	15	M4		
	PECs optimized for efficiency and durability	15	G3		

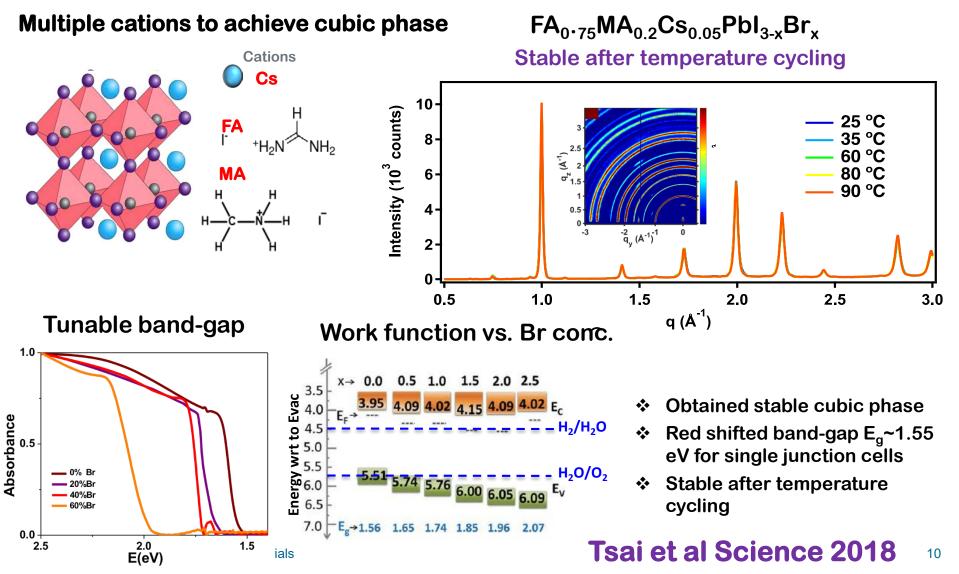
In-time progress / partially achieved

Accomplished

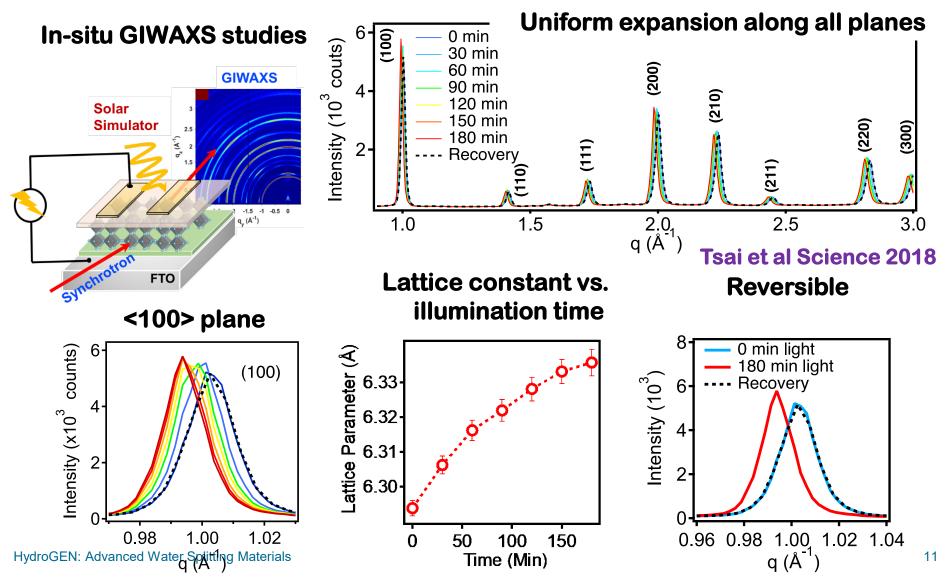
Milestones

No	Milestones / Decision criteria		
M9	 Perovskite solar cells with > 15% efficiency for one band-gap material. Band-gap tunability from 1.5 to 2.0 eV → discrete perovskite samples with band gaps of 1.5 (+/-0.3), 1.75 (+/-0.3) and 2.0 (+/-0.3) eV (GNG Phase 1, yearr 1) PEC stability >1000 hrs (<10% voltage degradation) using perovskite + commercial catalysts (GNG Phase 1, year. 1) 	Ongoing testing	
• M18	 HER and OER catalysts with overpotential of 150 mV & 200 mV at J of 20 mA/cm2 (GNG year 2) Demonstration of a barrier layer with 5000 hrs. stability of PV. (GNG yearr 2) 		
• M33	• STH of 15% with 5000 hrs. stability. (GNG year 3 - Final deliverable)		

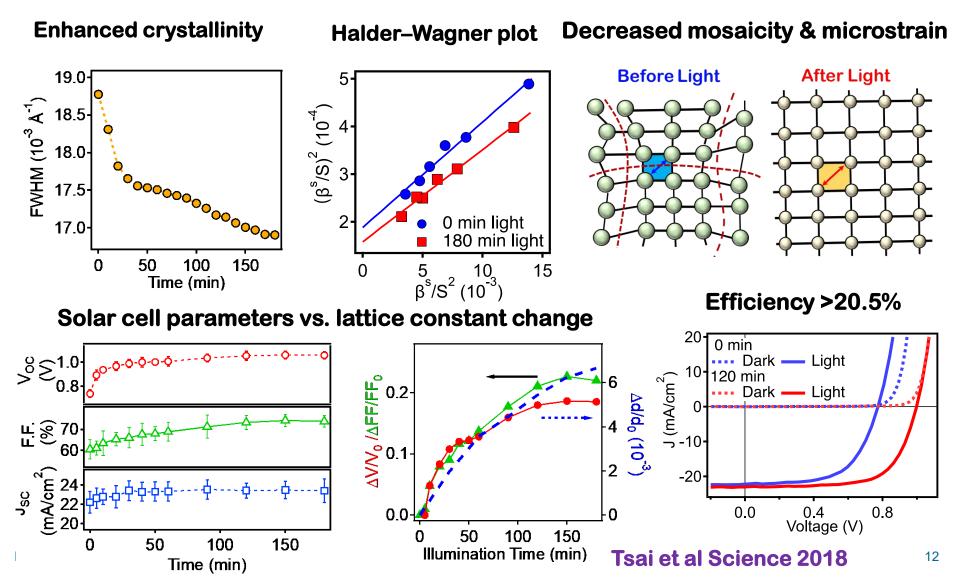
Accomplished


In-time progress / partially achieved

Accomplishments

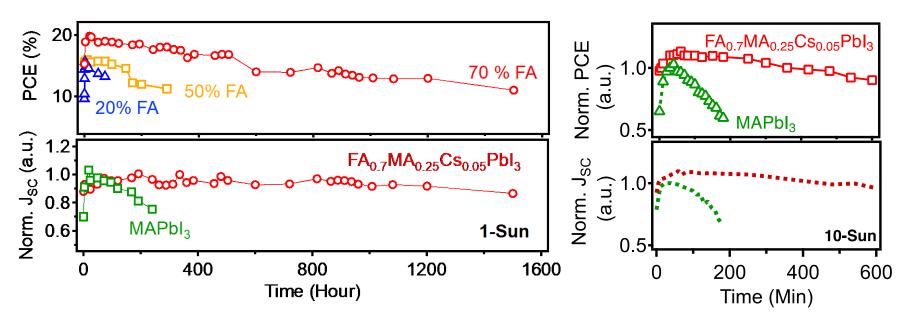

- Most important technical accomplishments and results
 - Discovery of a new mechanism to stabilize perovskite thin films (Science 2018) → stable (>1500 hrs) perovskite solar cells with >20% efficiency [Milestone complete – BP1]
 - Perovskite with tunable bandgap (1.5 2 eV) and optimized band alignment [Milestone complete- BP1]
 - Integration of perovskite cathode cell in PEC devices and stability tests ongoing [50% complete – Due Oct 2018 – BP1]
 - Nb_{1.35}S₂ HER catalyst with overpotential <150 mV and >>20 mA/cm² with stability 100 hrs [Milestone complete-BP2]
 - Ni-Fe@MW-rGO OER catalyst with overpotential <200 mV and 1 mA/cm² [90% complete- Due June 2019 - BP2]
- Projected outcomes expected before end year 1
 - □ Testing of perovskite solar cells with barrier layers
 - □ Integration of solar cells in PEC devices with commercial catalysts → test for 1000 hrs. stability [only milestone left for this period]

Innovation: Developed new chemistry for hybrid perovskites



Accomplishments & progress

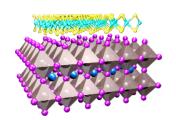
Discovery of new effect: Light-induced lattice expansion

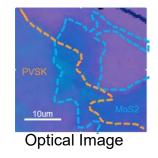

Light-induced lattice expansion cures interface/bulk defects

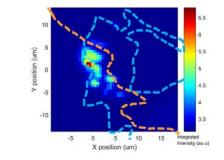
Excellent photostability under 1-Sun and 10-Sun

Long term photo-stability

Stability under 10-Suns

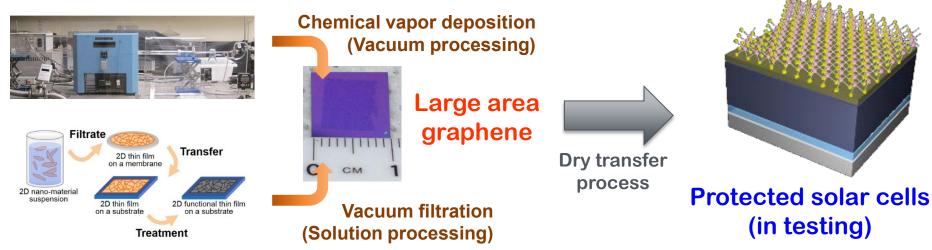



- Long-term stability achieved under 1-Sun for >1500 hrs and also under 10-Sun illumination.
- Stability comparable to 2D perovskite but efficiency >20.5% -Promising for PECs (Cathodes and Anodes)

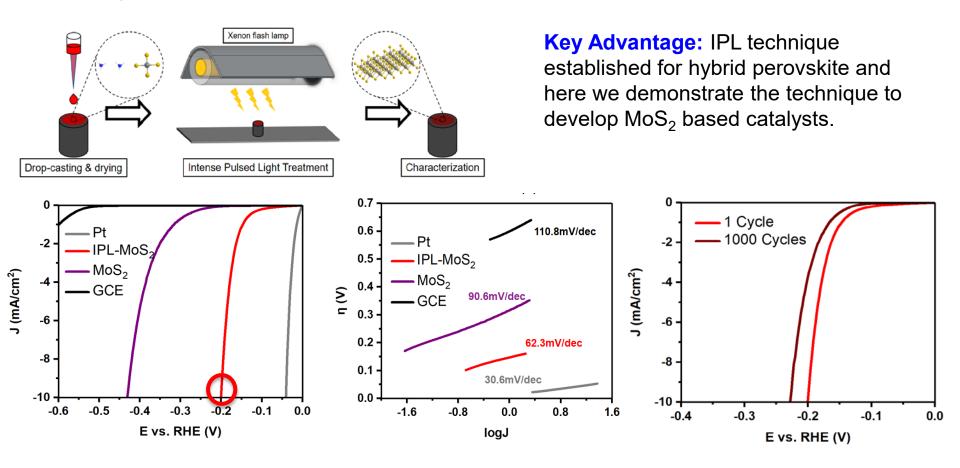


Innovation: Strategies for barriers on perovskite solar cells (ALD, layered materials, Oxides)

Protection of perovskite using layered materials



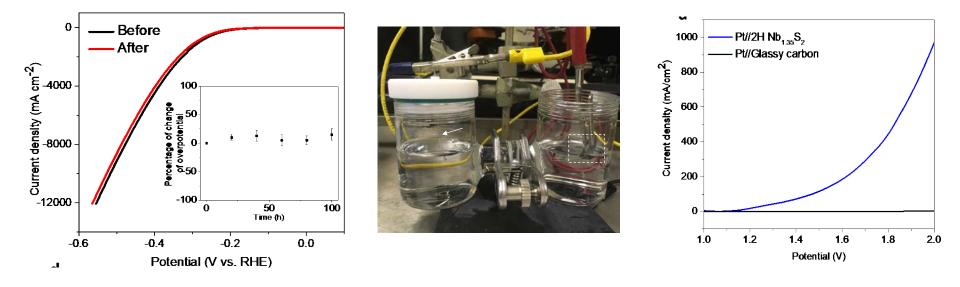
Photoluminescence image shows no degradation of the perovskite under 2layers of MoS₂


Example of strategy development in progress

HydroGEN: Advanced Water Splitting Materials

Accomplishments & progress HER Catalysts

Innovation: Novel method to mass produce MoS2 based HER catalysts obtain in milliseconds

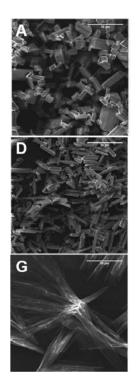


Gautam Gutpa research group - UofL

HER Catalysts

Innovation: Developed new Nb_{1.35}S₂ catalysts with very high current density – demonstrated electrolyzer

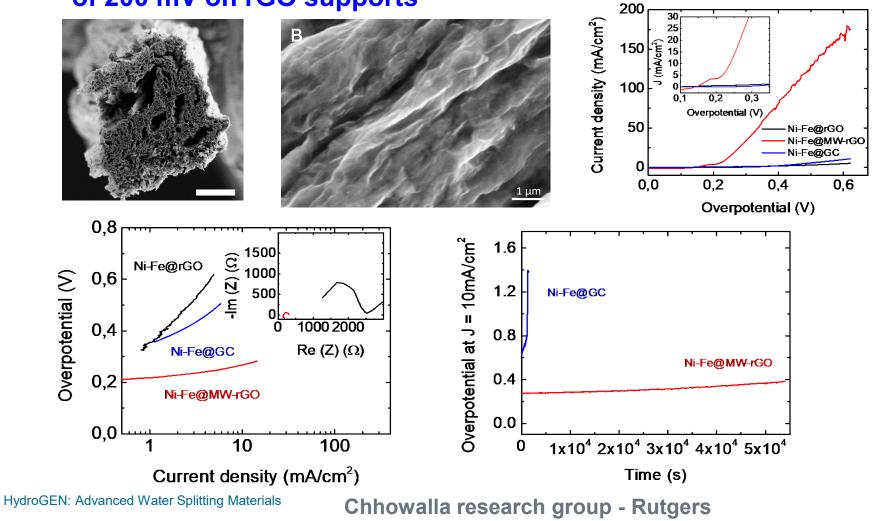
Nb_{1.35}S₂ catalysts demonstrated good stability


Incorporated Nb_{1.35}S₂ catalyst in an electrolyzer

Chhowalla research group - Rutgers

HER Catalysts

Innovation: Nickel based molecular catalysts – excellent durability & solvent compatibility with perovskites

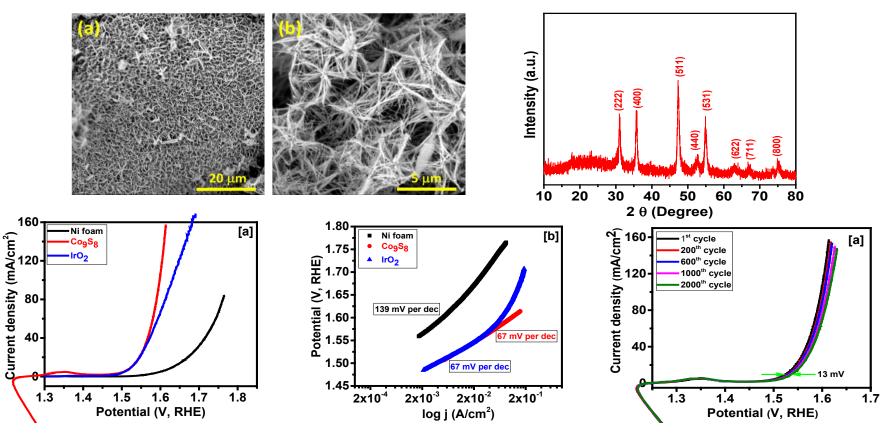


Gautam Gutpa research group - UofL

OER Catalysts

Innovation: Developed Ni-Fe catalysts with an overpotential of 200 mV on rGO supports

18

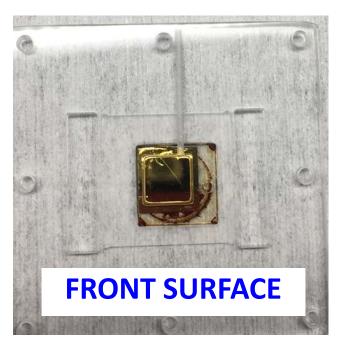


H

Accomplishments & progress OER Catalysts

Innovation: Highly efficient and durable electro-catalysts

based CoS nanowires

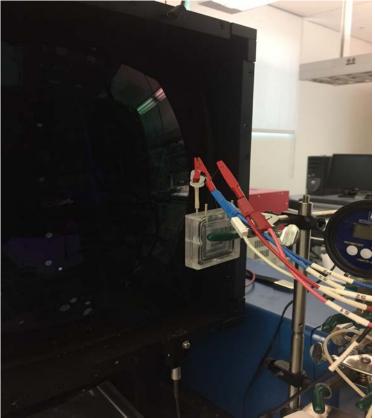


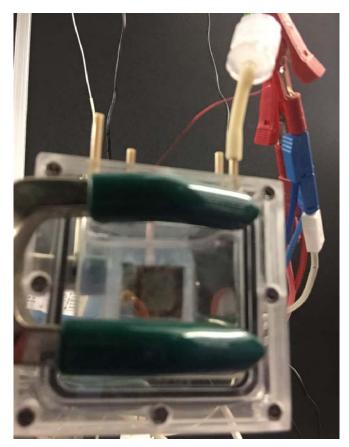
Key Advantages: Good performance and excellent cycleability in alkaline media Gautam Gutpa research group - UofL



Innovation: Integration & testing strategy for perovskite/catalyst first of its kind PEC performed at LBNL

- Cell sits on an epoxied ledge
- Prevents exposure to solution
- Front contact (Au) exposed to solution through opening


- Wire is Ag epoxied to ITO (or FTO) through a hole in the plate,
- Backfilled with clear epoxy



Full cell with Ir counter in 0.1M KOH

- Ir counter in 0.1M KOH
- Both faces exposed to the solution

Collaboration: Effectiveness

Effective interactions with EMN nodes, Data Hub & ECS working group

- ✤ LBNL: PEC measurements and benchmarking
 - Dr. Nemanja Danilovic & Dr. Francesca Toma
 - 1. Site-visit (2-full days) to establish detailed protocols for hybrid perovskite PEC measurements
 - 2. Established device design and interface layers for photocathode & anode
 - 3. Design of complete PEC cell and validated design by loading perovskite/Pt photocathodes
 - 4. Three batches of perovskite solar cells exchanged with different barrier layers
- LBNL: Understanding degradation mechanisms in PECs through in-situ characterization techniques – Dr. Francesca Toma
 - 1. Planed work to perform in-situ degradation studies before and after PEC testing using in-situ scanning probe techniques such as conducting AFM
 - 2. Planned work on measuring in-situ charge transfer using dynamic optical probes
- **LBNL: Multiscale modeling of PECs Dr. Adam Weber**
 - 1. Discussions to understand interfacial degradation processes using modeling

Impact on project: Critical for development of first of its kind perovskite-based PEC platform for testing, characterization and benchmarking performance and stability.

- NREL: Techno economic analysis of perovskite based PEC system Dr. Genevieve Saur
 Working to develop a rough techno-economic evaluation of the perovskite-based PEC
- **Benchmarking PECs:** Participating in ECS working group for standardizing PECs
- Data Hub: Uploaded data on perovskite solar cells with >20% efficiency and stability

- Test and develop interface barrier strategies (layered 2D materials e. g. rGO, MoS₂, NbS₂) on hybrid perovskites
- Perform photocathode and photoanode measurements on perovskite/Pt and perovskite/Ir based catalysts
- Integrate earth abundant catalysts such as MoS₂ (HER) and Li-Fe LDH, metal oxides on perovskite solar cells to create perovskite-PECs
- Understand charge transport and degradation mechanisms by using in-situ optical techniques
- Characterize STH efficiency and stability of perovskite based PEC with earth abundant HER and OER catalysts

- Most important technical accomplishments and results
 - Discovery of a new mechanism to stabilize perovskite thin films (Science 2018) → stable (>1500 hrs) perovskite solar cells with >20% efficiency [Milestone complete]
 - Perovskite with tunable bandgap (1.5 2 eV) and optimized band alignment [Milestone complete]
 - Integration of perovskite cathode cell in PEC devices and stability tests ongoing [50% complete]
 - Nb_{1.35}S₂ HER catalyst with overpotential <150 mV and >>20 mA/cm² with stability 100 hrs [Milestone complete]
 - Ni-Fe@MW-rGO OER catalyst with overpotential <200 mV and 1 mA/cm² [90% complete]
- Projected outcomes expected before end year 1
 - Testing of perovskite solar cells with barrier layers
 - □ Integration of solar cells in PEC devices with commercial catalysts → test for 1000 hrs. stability [only milestone left for this period]