

High temperature reactor catalyst material development for low cost and efficient solar driven sulfur-based processes

Corgnale Claudio (PI) Organization: Greenway Energy (GWE) Date: June 13, 2018

GreenWayEnergy®

Project ID: PD169

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Lawrence Livermore National Laboratory

Project Overview

Project Partners

Corgnale C (*co-PI*), Summers W, Ganesan P (*GWE*)

Monnier J (*co-PI*), Regalbuto J, Shimpalee S, Weidner J, Tengco J, Diao W (*USC*)

Ginosar D, Adhikari B (*INL*), Ma Z, Davenport P, Martinek J (*NREL*), Gorensek M (*SRNL*)

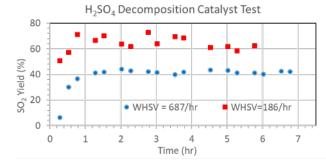
Project Vision

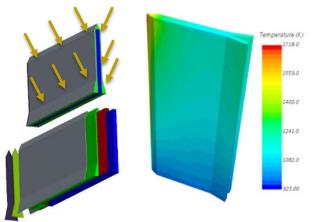
Development of:

- <u>New catalyst material</u> using our demonstrated surface free energy (SFE) and electro-less deposition technique,
- Novel integrated <u>direct solar reactor-receiver</u>, based on a demonstrated cavity solar reactor,
- New effective <u>solar-thermochemical plant process</u> <u>integration</u>

Objective:

<u>efficient and low cost</u> solar thermochemical process


Project Impact


- Increase of the <u>energetic and exergetic efficiency</u> (solar to H₂ energy efficiency > 20%),
- Projected reduction of the <u>H₂ cost to < 2 \$/kg</u>

* this amount does not cover support for HydroGEN resources leveraged by the project (which is provided separately by DOE)

HydroGEN: Advanced Water Splitting Materials

Award #	EE0008091
Start Date	10/01/2017
Yr 1 End Date	12/31/2018
Project End Date	TBD
Total DOE Share	\$999,998
Total Cost Share	\$267,182
Yr 1 DOE Funding*	\$250,000

Project history

- GWE, USC and SRNL have been working together on H₂ and renewable energy based systems
- INL and SRNL were involved in the NHI for sulfur based thermochemical cycles development
- NREL and GWE have common experiences in solar applications (SunShot Initiative)

Initial results

- Initial catalyst formulation identified with promising results
- Novel direct solar receiver-reactor concept for H₂SO₄ decomposition identified and numerically verified
- Novel process flowsheet identified allowing higher efficiency and potential cost reduction

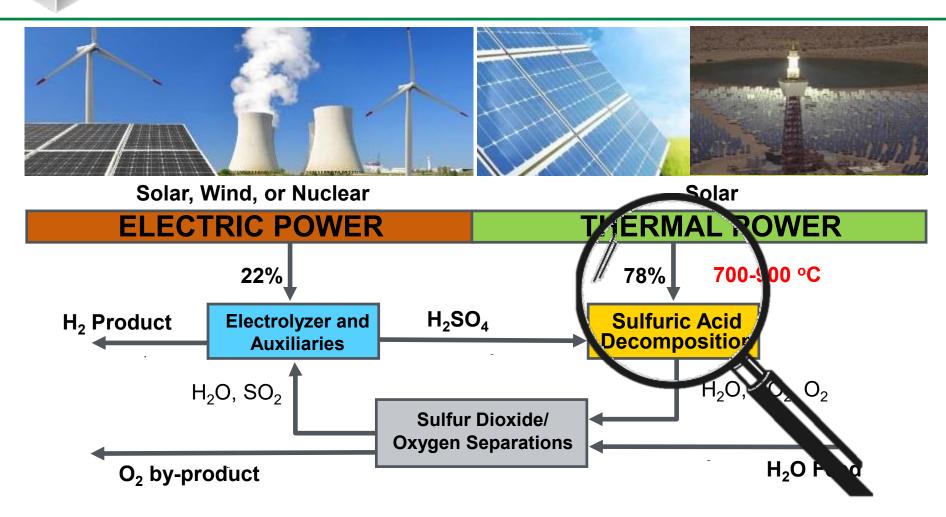
Barriers	Solutions
Catalyst activity and lifetime	Bimetallic catalyst - ED technique
Materials of construction and BOP at high temperature	SiC material - Modeling and experimental stress tests
Efficient and cost effective solar- HyS plant integration	Unified intensified solar receiver- reactor
Efficient and cost effective solar HyS plant design	Augmented cross sectional heat recovery – External project results for the electrolysis – Enhanced heat exchangers

Key Impact – Proposed targets

Metric - Milestones	State of the Art	Proposed
Catalyst • Activity (moISO ₂ /h/g _{Cat}) • Degradation (%/hour)	0.23 0.030	0.28 0.015
Efficiency • Sun to H ₂ (%)	16 % (LHV)	> 20% (LHV)
Cost • H ₂ cost (\$/kg)	3.6 - 7.6	< 2

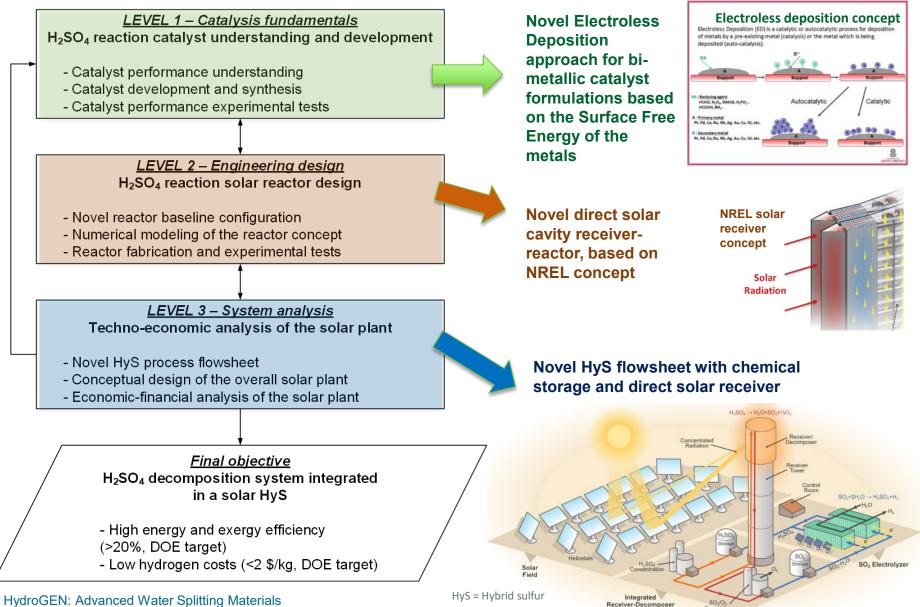
Partnerships

GWE – Techno-economic analysis, design solutions and detailed transport phenomena model


USC – Catalyst development and CFD analysis

INL – Catalyst performance analysis under realistic conditions

SRNL – HyS process modeling and analysis


NREL – Solar plant design and cost assessment

The high temperature decomposer is the key component for the solar driven process energy efficiency and cost reduction

Approach-Innovation

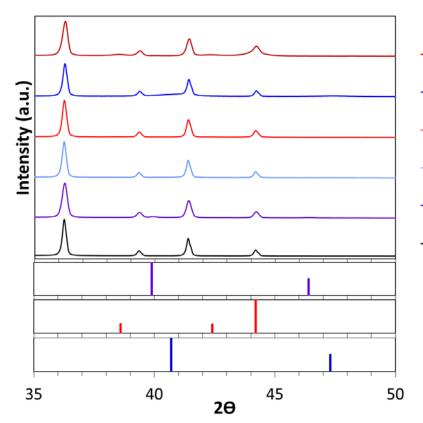
and Storage

Level 1 – Catalyst development

Improved catalyst development and test (100 hours) showing reduced deactivation Partners: USC - INL *Milestones 1.1 and 1.2 - 45% completed* Level 2 – Reactor design

Design of improved reactor allowing for increased efficiencies and cost reduction *Partners: GWE – USC - NREL*

Milestone 1.3 - 70% completed


<u>Level 3 – Solar system analysis</u>

Techno-economic analysis of the overall solar HyS plant, achieving solar to H₂ efficiency > 20% (DOE target) and cost < 2 \$/kg (DOE target) *Partners: GWE – SRNL - NREL Milestone 1.3 – 50% completed*)

Metric - Milestones	State of the Art	Proposed
Catalyst Activity (molSO₂/h/g_{Cat}) Degradation (%/hour) 	0.23 0.030	0.28 0.015
• Sun to H ₂ (%)	16 % (LHV)	> 20% (LHV)
Cost • H ₂ cost (\$/kg)	3.6 - 7.6	< 2

Accomplishments – Catalyst development

Monometallic materials	Preliminary characterization and status
1 wt% Pt/TiO ₂	Sintering at 800 °C in Ar
1 wt% Ir/SiO ₂	Sintering of Ir at 800 °C in Ar with supports
1 wt% Ir/Al_2O_3	different than TiO ₂
1-5 wt% Ir/TiO ₂	No sintering at 800 °C in Ar – bimetallic support
1-5 wt% Ru/TiO ₂	No sintering at 800 °C in Ar – bimetallic support

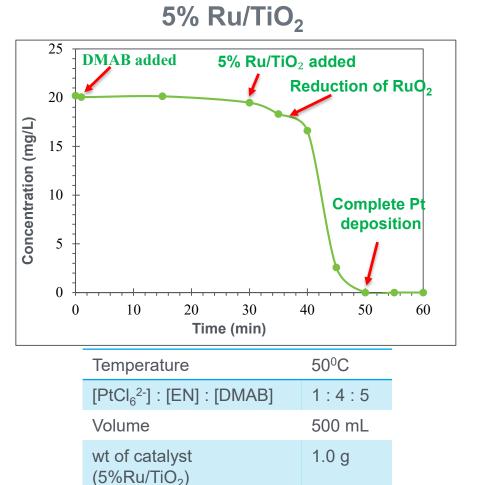
- —5%Ru/TiO₂, fresh
- —5%Ir/TiO₂, fresh
- –1%Ru/TiO₂, fresh
- —1%Ir/TiO₂, fresh
- —1%Pt/TiO₂, fresh

—TiO₂

Pt

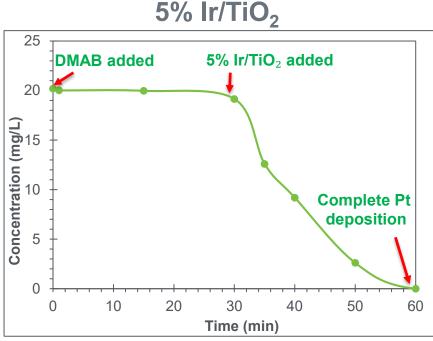
Ru

lr.


USC = University of South Carolina SEA = Strong Electrostatic Deposition CEDI = Charge Enhanced Dry Impregnation ED = Electroless Deposition HyS = Hybrid Sulfur

- Objective: high performance catalyst. Initial material cost is a secondary aspect in the HyS cycle
- Monometallic Pt sintered
- Bimetallic catalyst using ED of Pt (catalyst) on top of higher SFE core metals (Ru and Ir).
- Best support for bimetallic catalyst is TiO₂ with Ru or Ir.
- Monometallic materials (Ir and Ru) well dispersed using SEA and CEDI.
 - Small peaks and small particles detected in the XRD analysis.
- Catalysts characterized using XRD, STEM, chemisorption, *in-situ* XRD, and TPO.

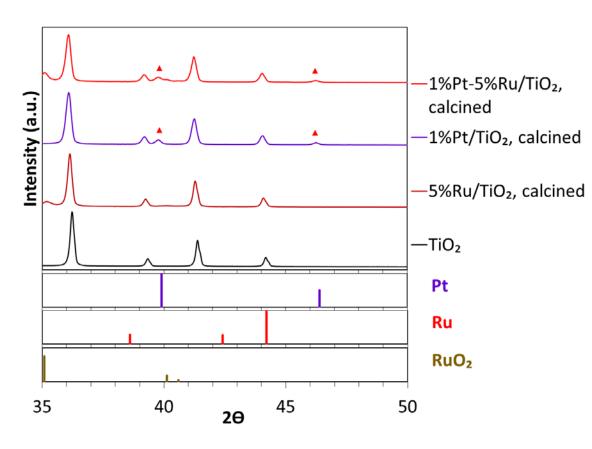
XRD = X Ray Diffraction STEM = Scanning Transmission Electron Microscope TPO = Temperature Programmed Oxidation SFE = Surface Free Energy


HydroGEN: Advanced Water Splitting Materials

Accomplishments - ED of Pt on 5% Ru/TiO₂ and 5% Ir/TiO₂ Level 1 (ED kinetics for Pt deposition)

1.0 %

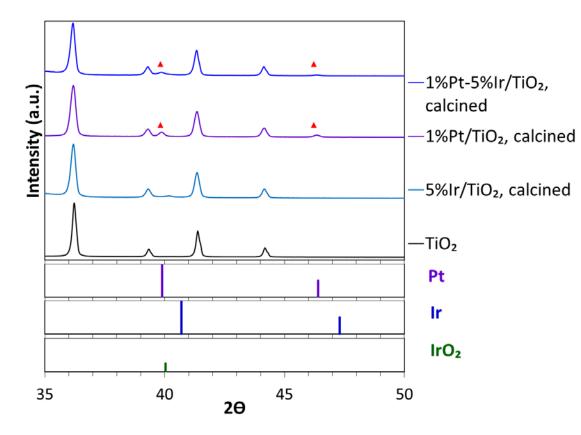
10


Temperature	50°C
[PtCl ₆ ²⁻] : [EN] : [DMAB]	1:4:5
Volume	500 mL
wt of catalyst (5%Ir/TiO ₂)	1 g
Wt% of Pt	1%
рН	10

HydroGEN: Advanced Water Splitting Materials

Wt% Pt

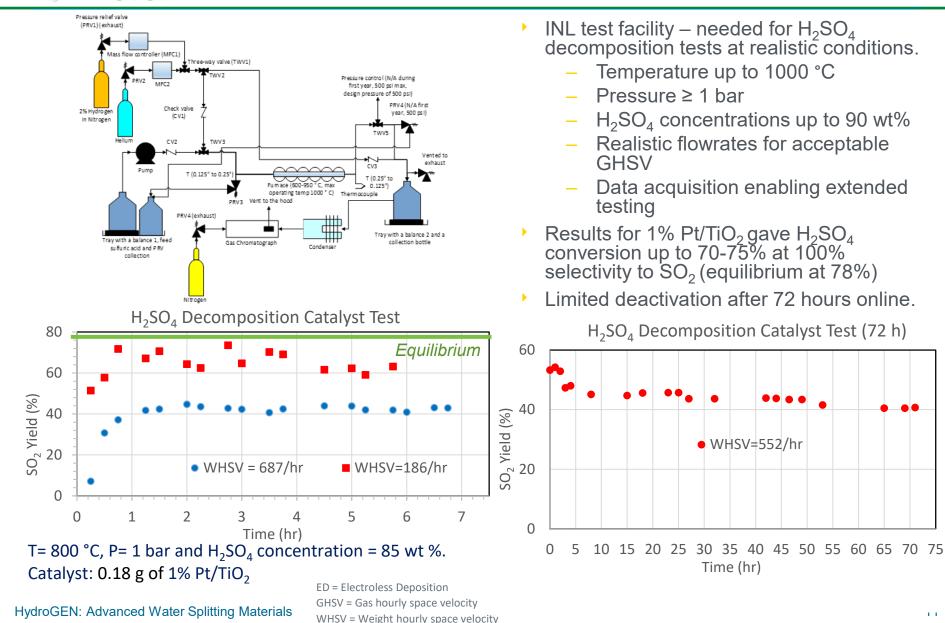
pН


Accomplishments – Pt deposited on Ru/TiO₂

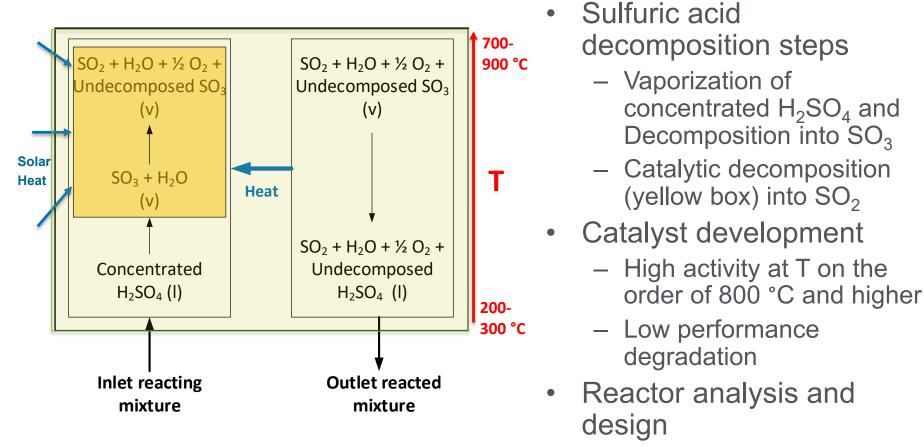
- Visible peaks (red triangles) indicate presence of Pt^o on surface but less intensity than monometallic Pt catalyst.
- Presence of RuO₂ on the surface.

- Initial results showed need for 5% Ru/TiO₂.
- Complete Pt deposition on Ru surface in 20 min.
- Induction period of 10 min to reduce $RuO_2 \rightarrow Ru^{\circ}$.

Accomplishments – Pt deposited on Ir/TiO₂

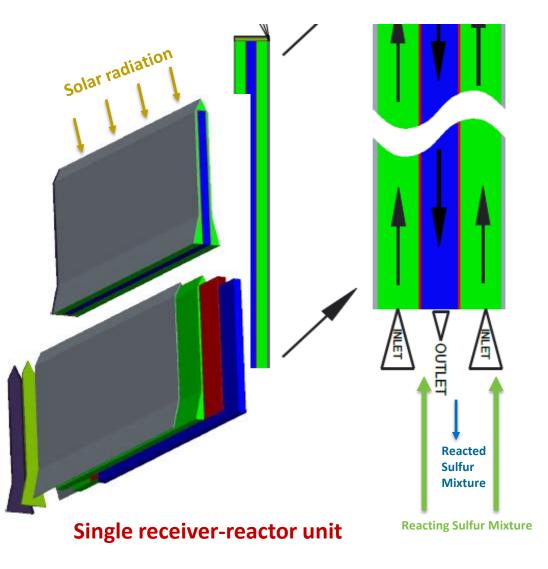


- Red triangles denote Pt^o
- Pt peaks have lower intensity than Pt-Ru bimetallic and monometallic Pt catalyst.


1%Pt/TiO ₂ Fresh	Intensity: 0.0078
1%Pt/TiO ₂ Calcined	Intensity: 0.0418
1%Pt on 5%lr/TiO ₂ Calcined	Intensity: 0.0185
_	

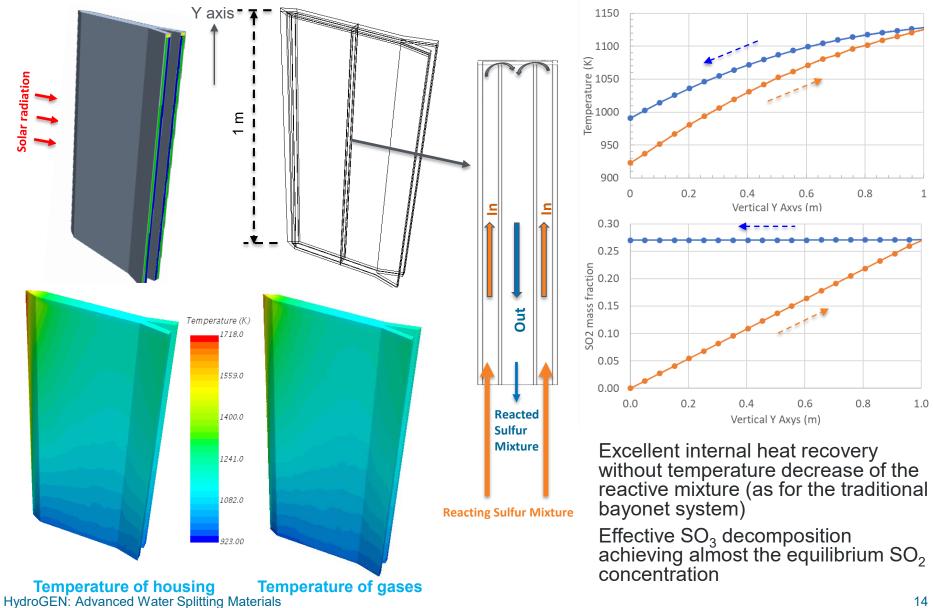
- Initial results showed need for 5% Ir/TiO₂.
- Complete Pt deposition onto Ir surface in 30 min.
- Absence of metal oxides.

Accomplishments – Monometallic catalyst test Level 1

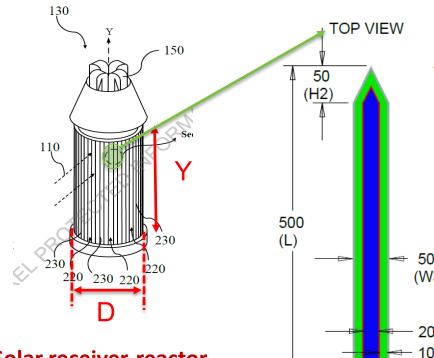


Accomplishments – H₂SO₄ decomposition

 Need for effective internal heat recovery and solar heat exchange


Accomplishments – Solar receiver/reactor Level 2

Novel GWE-NREL H₂SO₄ decomposition reactor configuration (ROI filled)


- Compact and intensified design
- External solar heating and internal heat recovery accomplished in a single SiC unit
- Technical feasibility demonstrated with detailed transport phenomena modeling results
- Projected strong cost reduction and overall increase of exergetic efficiency vs 'traditional' bayonet reactor

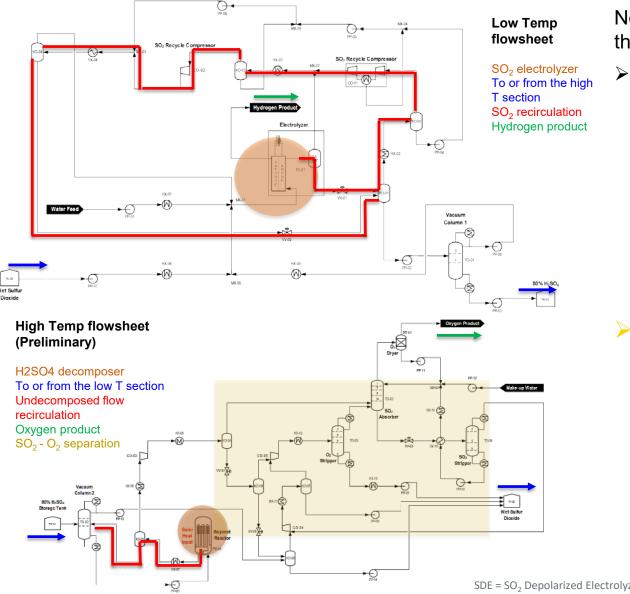
Accomplishments – Catalytic reactor simulation Level 2



14

Accomplishments – Solar reactor tower sizing Level 2

Solar receiver-reactor assembled units on top of the solar tower


Sizing of the solar receiverreactor

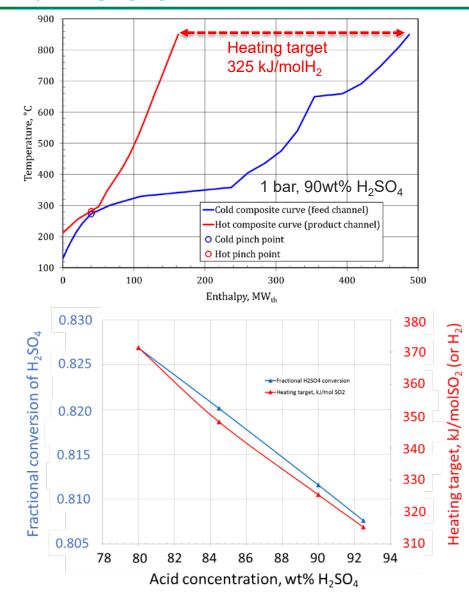
- Initial configuration achieved
 - Matching between heat exchange power requirements and geometry constraints

Single unit receiver/reactor		
L (m)	0.5	
W1 (m)	0.1	
H ₂ SO ₄ flow rate (kg/s)	0.285	
Assembled units for 50 TPD H ₂ production		

D (m)	16.5 (single tower)
Y (m)	2 (projected total length) 1 (SO ₃ catalytic decomposition section length)
Number of reactor units	516

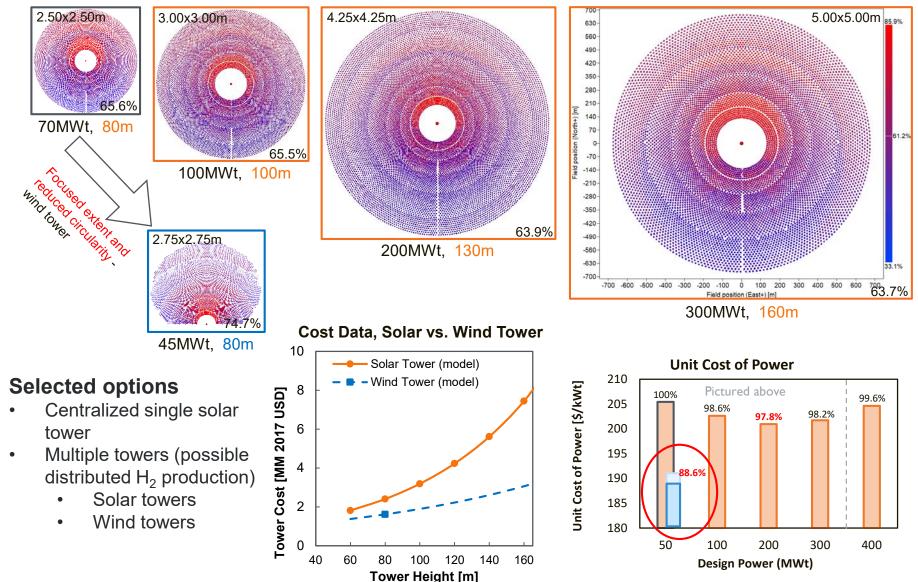
Accomplishments – Novel HyS flowsheet Level 3

Novel HyS cycle flowsheet based on the vapor fed SDE section

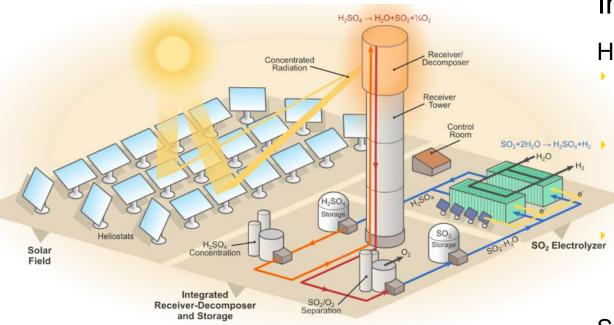

- SDE section
 - Increase of SDE efficiency \geq (externally financed USC work)
 - V= 545 mV, I= 500 mA/cm²
 - $W_{el} = 105.2 \text{ kJ/molH}_2$
 - Production of high concentration sulfuric acid
 - Higher temperature waste heat (140 °C) internally recoverable to concentrate H_2SO_4 up to 80wt%

High T section (preliminary version)

- Decrease of the decomposer heat duty
- Total internal heat recovery from undecomposed flow recirculation to concentrate H_2SO_4 up to 90wt%
- Increase of the overall efficiency - no need for external low T


SDE = SO₂ Depolarized Electrolyzer

Accomplishments – H₂SO₄ decomposer process


- Pinch analysis of the high temperature decomposition unit
 - Different scenarios analyzed (pressures, temperatures, concentrations)
 - Heating target duty = 325 kJ/molH₂ at 1 bar, 90wt% H₂SO₄, 850 °C
 - Reduction of about 10-12% compared to previous baseline configuration
 - Available waste heat at about 200°C recoverable to concentrate H₂SO₄
- Initial sensitivity analyses
 - P = 1 bar, T = 850 °C (so far)
 - High fractional conversion of H₂SO₄ achieved (81-83%)
 - Reduced heating target values, with baseline value of about 325 kJ/molH₂ for 90wt% H₂SO₄

Accomplishments – Solar field design

HydroGEN: Advanced Water Splitting Materials

Accomplishments – Initial solar system analysis

Solar HyS plant system

- Integrated direct H₂SO₄ decomposition receiverreactor unit
- Solar or wind tower
 - Unitized vs distributed approach
- Chemical storage
 - Liquid SO_2 storage (P = 1-5 bar)
 - Liquid H₂SO₄ storage

Initial efficiency analysis

HyS thermochemical process

- Low T section
 - W_{el} = 107.5 kJ/molH₂ (98% for the SDE)
 - High T section (preliminary)
 - W_{th} = 325 kJ/molH₂ (100%for the decomposer)
 - W_{el} = 2 kJ/molH₂

Overall HyS thermochemical efficiency (preliminary)

- Electric power plant $\eta = 40\%$
 - HyS efficiency = 40.4% (LHV)

Solar plant (preliminary)

- Heliostat $\eta = 65\%$
- Receiver η (projected) = 85%
- Additional losses (e.g. storage, tubing) = 1%
- Overall solar $\eta = 54.7\%$

Overall solar HyS process

(preliminary)

Solar to H₂ efficiency = 22% (LHV)

HyS = hybrid Sulfur SDE = SO₂ Depolarized Electrolyzer

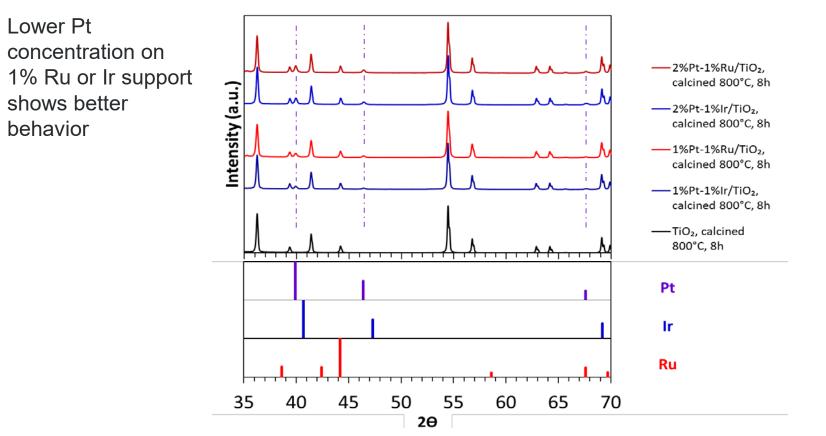
Collaboration: Effectiveness

Level 1 Action	Institution	Need for the AWSM
Catalyst development and synthesis	USC	- <i>INL</i> \rightarrow run of H ₂ SO ₄ decomposition tests at the
Catalyst tests under realistic conditions	INL	required T, P and concentration – <i>Milestone 1.2</i>
Level 2 Action	Institution	Need for the AWSM
Identification of novel solar reactor	GWE – NREL	- <i>NREL</i> has been critical to identify and optimize the
Detailed model of the new reactor	GWE – USC	novel direct solar reactor (concept being patented, ROI filled) – <i>Milestone 1.3</i>
Lab scale reactor demonstration	GWE – NREL	med) – <i>Milestone 1.5</i>
Level 3 Action	Institution	Need for the AWSM
HyS Flowsheet	GWE – SRNL	- NREL \rightarrow design of solar
Solar plant design	GWE – NREL	tower plants - <i>Milestone 1.3</i> - <i>SRNL</i> → development of
Plant techno-economic analysis	GWE – SRNL - NREL	HyS process flowsheeting – <i>Milestone 1.3</i>

- Meetings and data sharing
 - By-weekly meetings between recipients (GWE and USC) and capable labs (INL, NREL, SRNL) → presentations uploaded in the NREL Sharepoint
 - Face to Face meetings
 - Meeting 1 in SRNL (December 2017) with GWE, USC, SRNL → identification of the baseline flowsheet concept for the low T section (electrolysis)
 - Meeting 2 in NREL (March 2018) with GWE, USC, NREL → discussion about the solar field design and optimization, CFD analysis of the solar reactor, conditions for the SDE section
 - Reports uploaded in the NREL Sharepoint
- DataHub data
 - Flowsheeting data
 - High T equilibrium data for sulfuric mixtures (based on new process model from SRNL)
 - Solar plant design data (solar flux data, efficiencies, optimization and design data for solar tower and mirrors)
 - High temperature catalysis test data being updated

- Catalyst development and tests (USC INL)
 - Complete the development of bimetallic catalysts, with lower content of Ir/Ru and in-situ XRD tests
 - Long time tests (100 hours) on the monometallic and bimetallic Pt catalysts
 - Optimization of the bimetallic formulations
 - Continuous longer time tests (400-500 hours) on the optimized formulations
- Receiver reactor design (GWE USC NREL)
 - Optimized configuration of the receiver-reactor concept
 - Transport model analysis of the enhanced configuration
 - Modeling of the two-phase region of the decomposer
 - Use of realistic solar flux profiles
 - Fabrication of a receiver-reactor prototype
 - Experimental tests under electric heating conditions
- HyS process flowsheet (GWE SRNL)
 - > Finalization of the high temperature decomposition flowsheet
 - Mass and energy balance assessment (i.e. thermochemical efficiency)
 - Chemical storage design and optimization
 - Sensitivity analyses (pressure, temperature, concentrations)
 - > Optimization of the HyS flowsheet
- Solar plant system design and analysis (GWE NREL SRNL)
 - Conceptual design and installed cost assessment of the HyS process equipment
 - Conceptual design and cost assessment of the solar plant (heliostat field, tower, BOP, etc)
 - > Sensitivity analyses for different configurations and scenarios (e.g. centralized vs distributed)
 - Overall efficiency and cost assessment (H2A)
 - > Analysis of optimized configurations
 - Assessment of alternative solutions (HyS equipment and solar components)

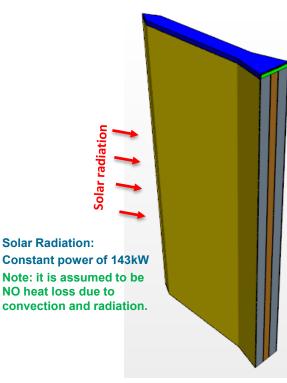
Beyond Budget Period 1 depending on funding availability

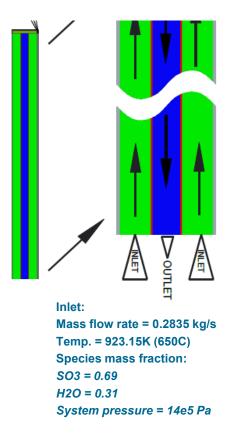


- Catalyst development and tests (USC INL)
 - Identified baseline monometallic configuration
 - > Identified initial bimetallic formulations (1% Pt on 5% Ir-TiO₂)
 - Initial successful tests for monometallic catalyst at INL
- Receiver reactor design (GWE USC NREL)
 - Identified an integrated solar receiver-reactor configuration
 - Configuration demonstrated through detailed transport modeling
 - Conceptual design of a scaled up reactor achieved
- HyS process flowsheet (GWE SRNL)
 - Novel vapor fed electrolyzer flowsheet developed
 - Initial development of a high temperature section flowsheet
 - Projected reduction of the electric and thermal power requirements
- Solar plant system design and analysis (GWE NREL)
 - Initial solar field layout optimization carried out
 - Different configuration analyzed
 - Initial efficiency projections exceeding the initial targets

Technical Back-Up Slides

Calcined Samples of Pt (ED) on Ir/TiO₂ and Ru/TiO₂


- Calcination was done in a muffle furnace, with static air.
- Temperature was ramped up at 5 °C/min from RT to 800°C and then holding at that temperature for 8 h.
- Calcined samples showed formation of significantly sharp peaks corresponding to Pt.



SOUTH CAROLINA

• Sharper peaks were observed for higher Pt loading.

Porous Material Properties Catalyst: Porosity = 0.5 Solid thermal conductivity = 8.0W/m-K Isotropic permeability ~ 2E-9 m²

End Cap and outlet tube: Porosity = 0.5 Solid thermal conductivity = 34.8 W/m-K Isotropic permeability ~ 2E-9 m²

Reaction

$$R_j = R_{l,kin} = -A_j T^{\beta_j} \prod_{all \text{ reactants}} \left(\frac{\rho Y_l}{M_l}\right)^{P_{lj}} e^{-E_{aj}/R_u T} \qquad \text{kmol} / \left(\text{sm}^3\right)$$

 $\begin{array}{l} \mathsf{A}_{j} = \text{pre-exponential factor (0.16*)} \\ \beta_{j} = \text{temperature exponent (0.0)} \\ \mathsf{E}_{aj} = \text{activation energy} \end{array}$

* V. Nagarajan, Intl. J. of Hydrogen Energy, 33 (2008), 6445-6455.

Accomplishments – SDE section flowsheet

SDE section flowsheet balance

H ₂ Production Rate (kmol/sec)	1		
Electric power requirements (MW_):			
EL-01, SO ₂ -Depolarized Electrolyzer	105.244		
CO-01, Low-Pressure SO ₂ Recycle Compressor, First Stage	0.087		
	0.024		
CO-01, Low-Pressure SO ₂ Recycle Compressor, Second Stage CO-02, High-Pressure SO2 Recycle Compressor	2.130		
PP-01, Water Feed Pump	0.003		
PP-02, Acid Flash Condensate Pump	0.000		
PP-03, LP SO ₂ Recycle Compressor Intercooler Condensate Pump	0.001		
PP-04, Total Condensate Recycle Pump	0.003		
Total electric power requirement:	<u>107.490</u> M	W	
<u>Cooling requirements (MW_{th}):</u>		Tempera	tures (°C)
HX-02, Acid Flash Vapor Condenser	7.034	98.7	40.0
HX-03, SO ₂ Recycle Condenser	39.594	140.1	40.0
CO-01, low-pressure SO ₂ recycle compressor stage 1-2 intercooler	0.701	170.2	40.0
EL-01, SO ₂ -Depolarized Electrolyzer	296.306	140.0	139.0
Total cooling requirement:	<u>343.635</u> M	<u>343.635</u> MW _{th}	
HX-01, Water Feed Vaporizer	47.116	25.0	120.0
HX-04, Water Recycle Vaporizer	43.682	55.5	120.0
Total heating requirement:	90.798 MW _{th}		
		ci i	
SDE performance			
SO ₂ conversion, mol%	50		
H ₂ O/SO ₂ feed mole ratio	2.75		
Reversible cell potential, mV	411.0		
MEA iR loss, mV Anodic overpotential, mV	25.0 109.4		
Total cell potential, mV	545.4		
Current density, A	0.5		
Total cell area, m ²	38.6		
SDE product acid concentration, wt% H ₃ SO ₄	66.96		
Acid concentration exiting SDE flowsheet section, wt% H_7SO_4	68.38		
	00.00		

HydroGEN: Advanced Water Splitting Materials