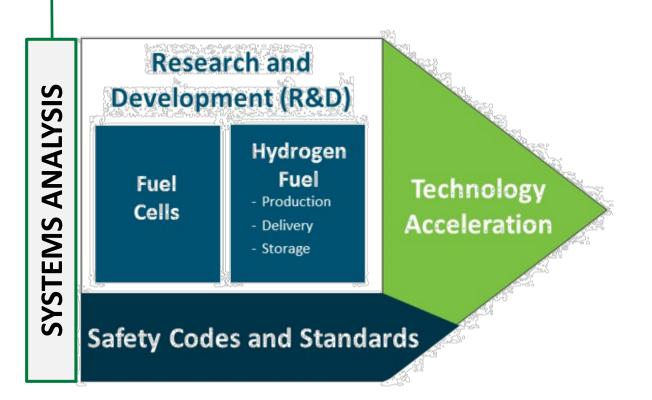


Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

System Analysis Program Overview *Poster SA01*

Fred Joseck – Project Manager, Fuel Cell Technologies Office

2018 Annual Merit Review


Washington, D.C. – June 13, 2018

Structure and Objectives

Systems Analysis Fit Within the Hydrogen and Fuel Cells Program

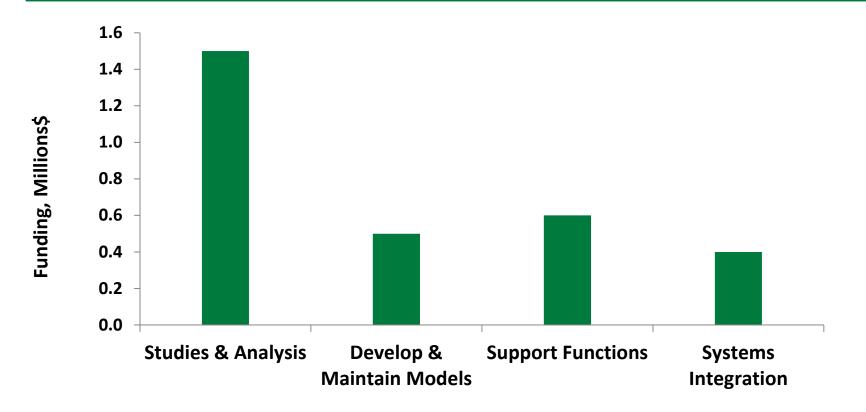
SA activities span across all focus areas and guide early-stage R&D and supporting efforts

Objectives

Evaluate

- Technologies and pathways
- Hydrogen supply and demand
- Energy security benefits

Guide


- Selection of R&D technology options
 Estimate
- Potential value of early-stage R&D efforts

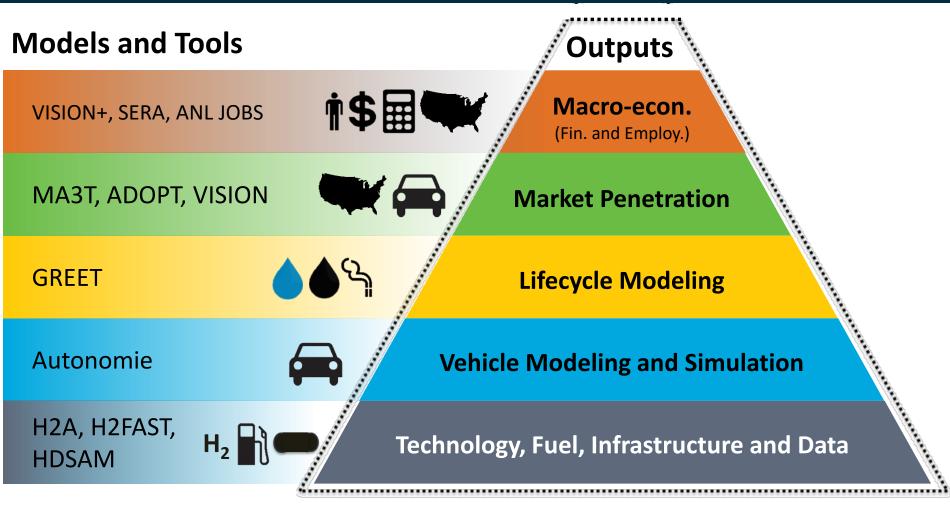
Identify

 Technology gaps including H2@scale

Budget – FY 2018 Appropriation

Total funding:	\$3.0 Million for FY 2018
Focus:	Estimate and evaluate early-stage R&D gaps, impact and potential growth.

Strategy

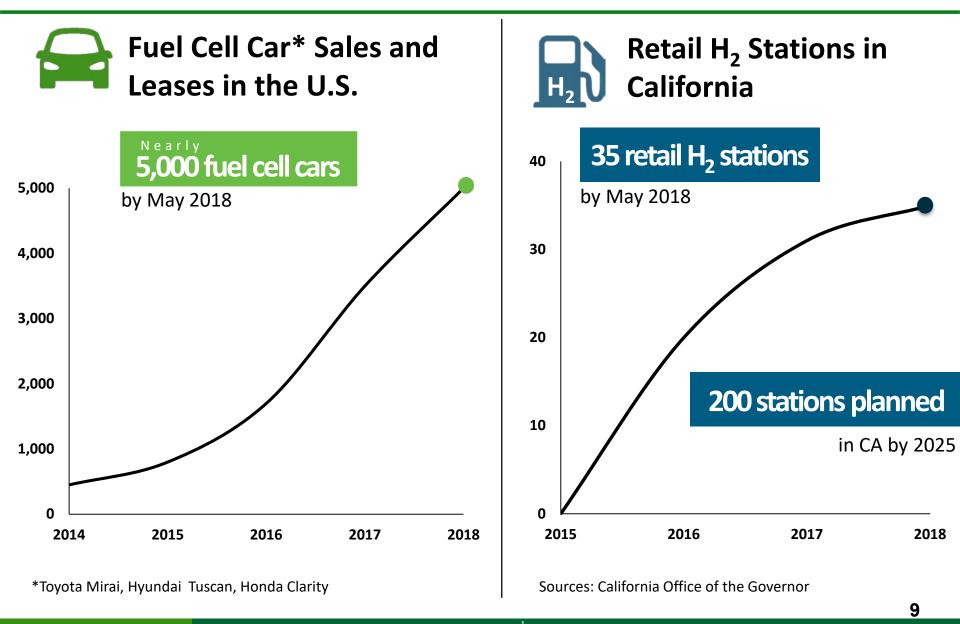

Partnerships with labs, industry, academia ا					
System Analysis Framework	Models and Tools	Studies and Analysis	Deliverables/ Results		
 Consistent and transparent data 	 Life cycle analysis benefits of hydrogen and 	 Initial phases of technology early market penetration 	 Support decision-making processes and milestones 		
 Prioritized analysis tasks Organize data and 	 fuel cells for diverse applications Portfolio of validated models for near and long term analyses 	 Long-term potential and issues 	 Direction, planning and resources 		
results for decision making		 Energy security analysis 	 Independent analysis to validate decisions 		
 Effective analytical workshops to gather key input assumptions 		 Energy storage analysis 	 Risk analysis of program area targets 		
for analysis		 Resource supply for hydrogen production 	 Sustainability metrics 		

FCTO Program Collaboration and Input

Internal and External Peer Review

Model and Tool Portfolio

A versatile, comprehensive and multi-functional portfolio:

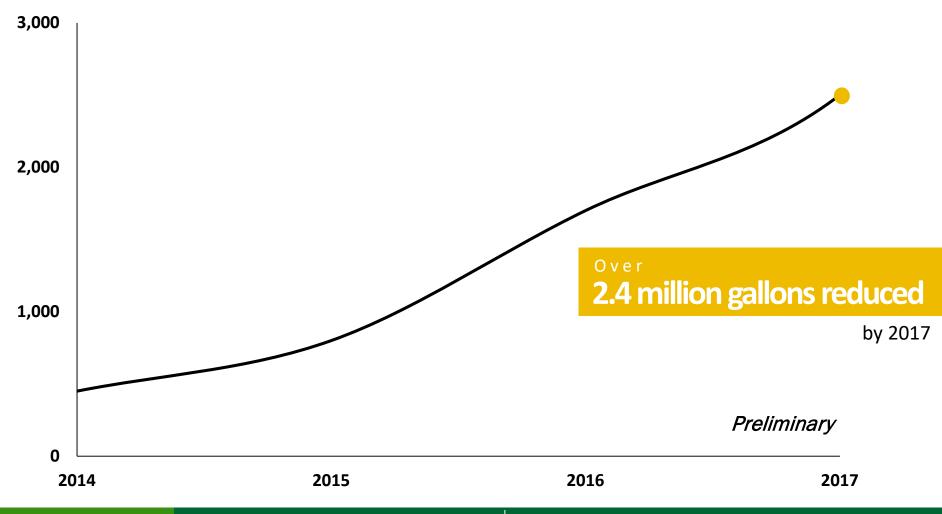


Model Description Factsheets Available at: www.energy.gov/eere/fuelcells/systems-analysis

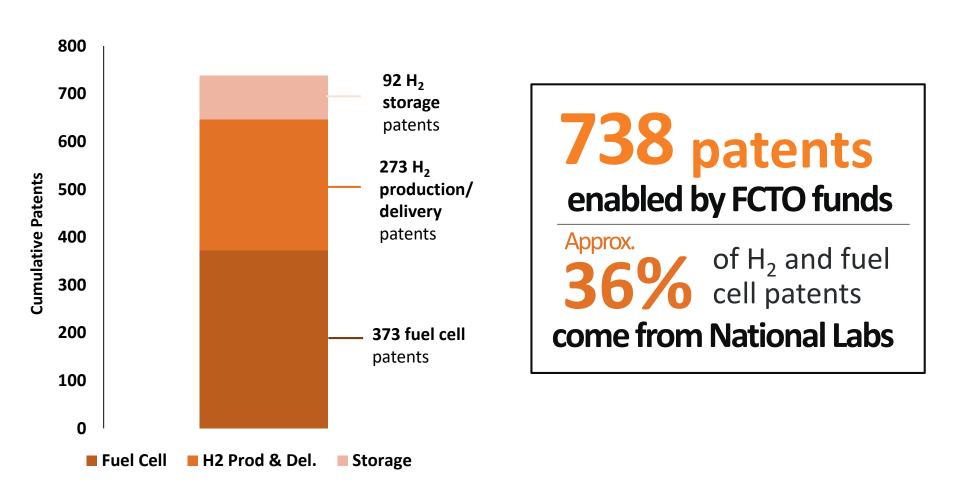
FCTO Analysis Portfolio in Summary

Analysis Type: Models:	Tech., H ₂ , Infras & Data	VEHICLE	Lifecycle	MARKET	MACRO	 Covers the full analysis space and includes some redundancies (left figure) 			
H2A						 Some projects (figure below) 			
HDSAM						span all categories for a truly integrated analyses			
ORNL and HyARC databases									
Autonomie						Project Example:			
FASTSim						GPRA* Integrated Analysis	MACRO		
GREET						Analysis	MAG		
МАЗТ						H2A, HDSAM and expert input			
ADOPT						Autonomie			
SERA						GREET			
JERA						MA3T			
JOBS						VISION			
VISION						* Government Performance Results Act			

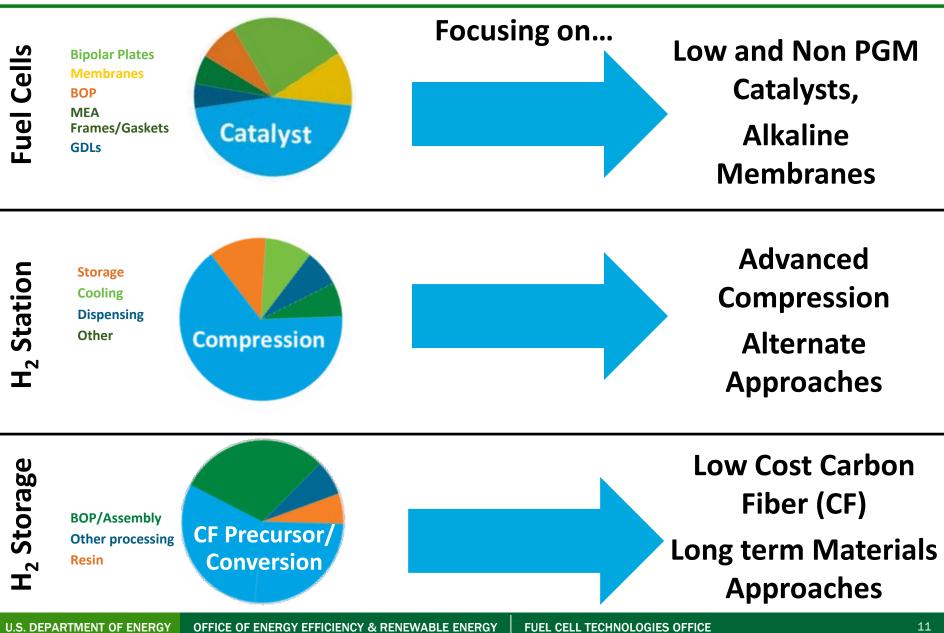
Fuel Cell Cars and Stations Growth Over the Years



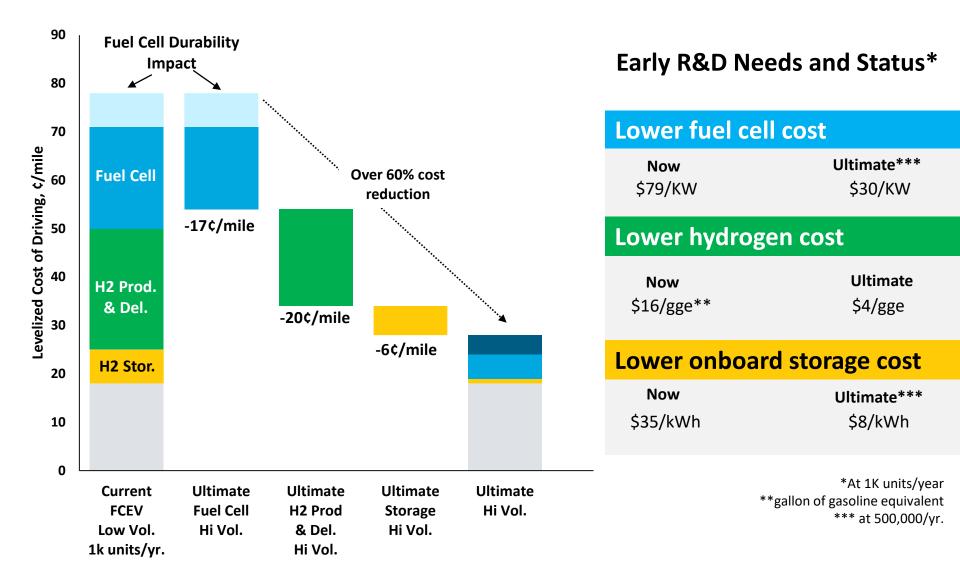
H₂ and Fuel Cells Enable Energy Security Benefits


Petroleum Displacement

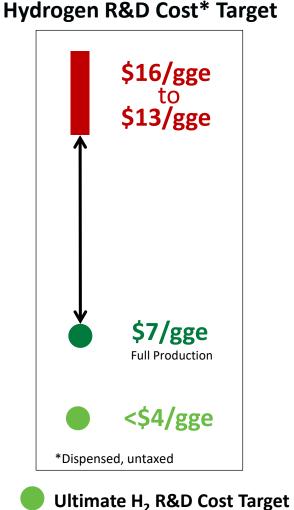
(cumulative, in thousands of gallons)


DOE efforts have enabled early stage R&D innovation

Cumulative H₂ and fuel cell patents enabled by FCTO (2017)



FY 2017 – FY 2018 Highlights


Identified key cost areas to guide R&D portfolio

Identified Fuel Cell Car Cost Reduction Pathways

Updated hydrogen R&D cost target

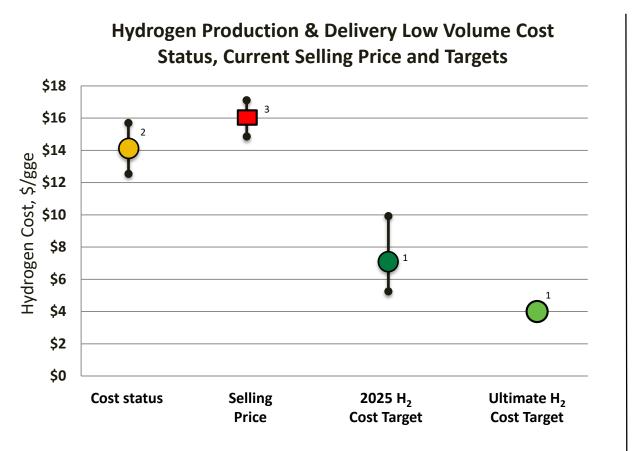
rget

Assumptions

Preliminary

	H ₂ R&D Cost Target		
	2025	Ultimate	
H ₂ R&D Cost Target	\$7/gge	<\$4/gge	
Reference year \$	2016\$	2016\$	
Reference gasoline mid-size vehicle	ICEV	HEV	
Reference fuel	Gasoline	Gasoline	
Cost of gasoline (untaxed) ¹	\$1.70-5.60/gge	\$1.70-5.60/gge	
Vehicle fuel on-road fuel economy ²	30-39 mi./gge	44-60 mi./gge	
FCEV on-road fuel economy ²	62-87 mi./gge	62-87 mi./gge	
FCEV incremental cost vs ICEV ²	\$0.00-0.03/mi.		
FCEV incremental cost vs HEV ²		\$0.00-0.04/mi.	

E E

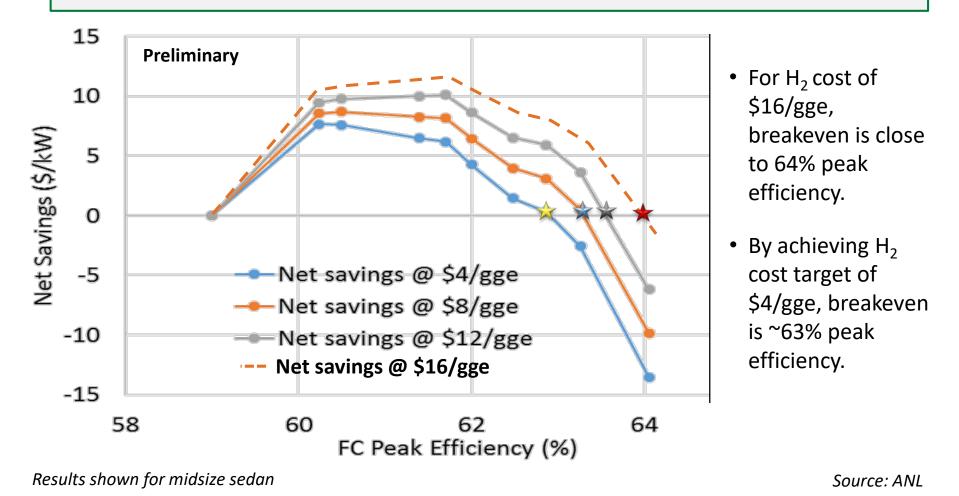

2025 H2 R&D Cost Target

Low-Volume Current Status

¹ EIA 2017 Annual Energy Outlook

² Elgowainy et. Al., 2016. Cradle-to-Grave Lifecycle Analysis of U.S. Light Duty Vehicle-Fuel Pathways. Argonne National Lab.

Identified H₂ Low Volume Cost Status and Targets


- 1 Draft Record 11007 Hydrogen R&D Cost Target
- 2 Record 15012 Low-Volume Early-Market Hydrogen Cost Target
- 3 California Air Resources Board AB 8 publication 2018

Assumptions

- Hydrogen central production is assumed
 - Delivery by gaseous or liquid truck within 200 miles at volumes of 500-1000 kg/month.
 - Production cost based on actual costs provided by industrial gas suppliers and end users.
- Hydrogen cost for compression, storage and dispensing is based on the results from H2FIRST Station Design Report.
- \$15-\$16.80/gge. is current selling price range for retails stations in CA (12/2017).

Identified Cost Savings of Higher FC Efficiency

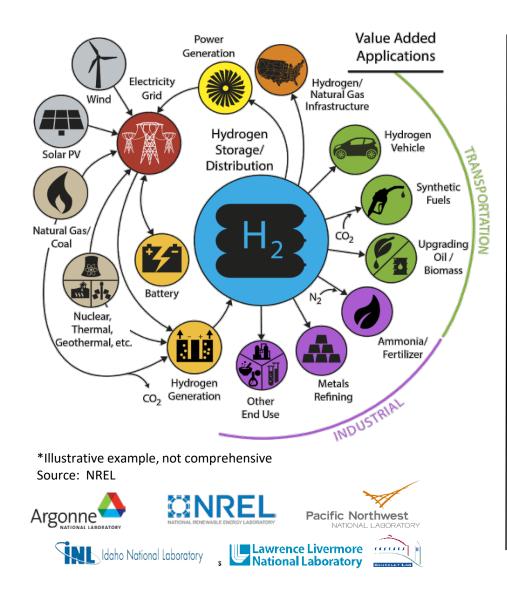
Maximum Cost Saving Benefits Occur for Fuel Cell Systems Designed for ~60 to 62% Peak Efficiency

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY FUEL CELL TECHNOLOGIES OFFICE

Evaluated and Compared Total Cost of Ownership (TCO)

Various fuel cell car models show increasing cost benefits for driving ranges over 150 miles

Year 2040: FCEV minus BEV-X Total Cost of Ownership Green shows where FCEVs are more cost effective


	50 mi.	100 mi.	150 mi.	200 mi.	250 mi.	300 mi.	350 mi.
Two-seaters	\$0.05	\$0.01	-\$0.03	-\$0.07	-\$0.11	-\$0.15	-\$0.19
Minicompacts	\$0.05	\$0.02	-\$0.01	-\$0.04	-\$0.07	-\$0.10	-\$0.13
Subcompacts	\$0.05	\$0.02	-\$0.01	-\$0.04	-\$0.07	-\$0.11	-\$0.14
Compacts	\$0.04	\$0.01	-\$0.02	-\$0.05	-\$0.09	-\$0.12	-\$0.15
Midsize Cars	\$0.05	\$0.01	-\$0.03	-\$0.06	-\$0.10	-\$0.13	-\$0.17
Large Cars Small Station	\$0.04	\$0.01	-\$0.02	-\$0.06	-\$0.09	-\$0.12	-\$0.16
Wagons	\$0.05	\$0.01	-\$0.03	-\$0.07	-\$0.11	-\$0.15	-\$0.19
Pass Van	\$0.03	-\$0.01	-\$0.06	-\$0.11	-\$0.15	-\$0.20	-\$0.24
SUV	\$0.03	-\$0.02	-\$0.08	-\$0.14	-\$0.19	-\$0.25	-\$0.30
Small Pickup	\$0.06	\$0.02	-\$0.02	-\$0.07	-\$0.11	-\$0.15	-\$0.19

Source: *Market Segmentation of Light-Duty Battery Electric and Fuel Cell Electric Vehicles* www.sciencedirect.com/science/article/pii/S0968090X18300056

Assumptions

Range: 13,000 miles/yr. BEV: Battery cost: \$165/kWhr Electric price: \$0.12/kWh FCEV: Fuel cell cost: \$30/kW Storage: \$8/kWh Hydrogen cost: \$2.50/gge Discount rate: 7% Vehicle ownership: 15 yrs.

Initiated H2@Scale Analysis

Example of Activities

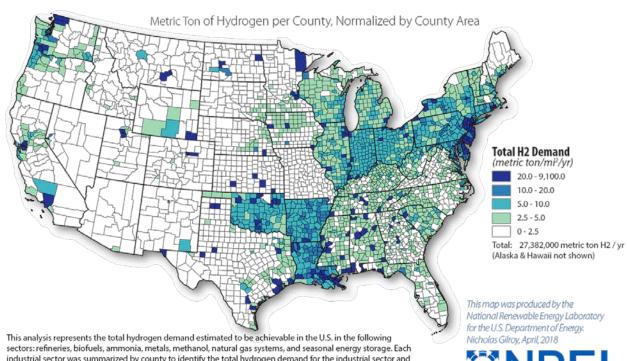
- ✓ Initial Step (Complete)
- Identify potential demand
- Examine supply resources
- Identify impact potential
- Identify infrastructure issues

In-depth Analysis (FY17-18)

- Evaluated H₂ price requirements
- Identified supply options and costs
- Examined 3 scenarios
- Performed stage-gate review

Additional analysis (FY18)

- Evaluated regional scenarios
- Examined economic inertia and externalities
- Performed spatial analysis


Estimated Technical Potential Hydrogen Demand

Nearly 90 MMT/year in potential hydrogen demand. Coming from light duty vehicles, natural gas, ammonia and metals industries; and the energy storage sector.

Technical Potential

 $(MMT^*/vr.)$

Refineries & CPI [§]	8
Metals	6
Ammonia	5
Methanol	1
Biofuels	1
Natural Gas	7
Light Duty Vehicles	28
Other Transport	3
Electricity Storage	28
Total	87

Represented in map

* MMT: Million metric tonnes

§ CPI: Chemical Processing Industry not including metals, ammonia, methanol, or biofuels

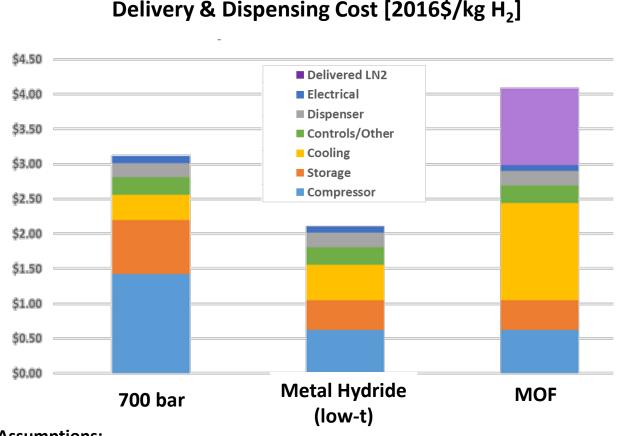
Light duty vehicle calculation basis: 190.000.000 light-duty FCEVs from http://www.nap.edu/catalog/18264/transitions-to-alternative-vehicles-and-fuels

industrial sector was summarized by county to identify the total hydrogen demand for the industrial sector and then normalized by area.

Data Source: NREL analysis

Integrated H₂ Delivery and On-Board Storage Analysis

Coordinated approach allows to identify issues associated with coupling refueling infrastructure options with onboard storage technologies


Findings (Preliminary)

H₂ Delivery/MOF Onboard storage system

- Delivering LN2 for onsite cooling is EXPENSIVE
- Future work: Consider LH₂ pathway for MOF

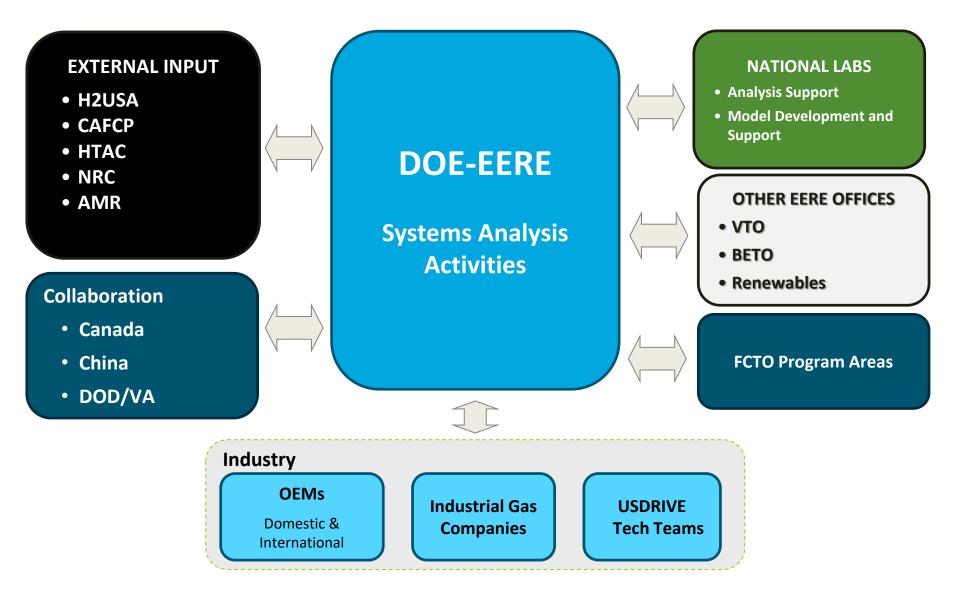
H₂ Delivery/Metal Hydride Onboard storage system

 Potential to reduce the delivery/storage costs

Assumptions:

1000 kg/day station Capacity, 0.8 Capacity factor, 20 bar H₂ supply, 4 dispensers

Recent and Upcoming Activities Summary


FY 2018 Emphasis:

- Early-stage and infrastructure R&D
- Life-cycle analysis of cost, petroleum and water use
- Program impacts on energy security and prosperity
- Sustainability Framework and FCTO metrics

FY 2018 – 2019 Activities:

- Identify gaps and drivers for early stage infrastructure R&D
- Assess early stage R&D impact on energy security
- Integrate analysis to ensure optimization
- Assess targets and metrics for medium and heavy duty trucks
- Conduct H2@scale analysis

Collaborations span national and international entities

Systems Analysis Team

Fred Joseck

Systems Analysis Lead Fred.joseck@ee.doe.gov

Shawna McQueen

Project Manager Shawna.mcqueen@ee.doe.gov

Vanessa Trejos Support Contractor Vanessa.trejos@ee.doe.gov

Learn more: energy.gov/eere/fuelcells/fuel-cell-technologies-office