

Market Segmentation Analysis of Medium and Heavy Duty Trucks with a Fuel Cell Emphasis

Chad A. Hunter National Renewable Energy Laboratory June 14, 2018

DOE Hydrogen and Fuel Cells Program 2018 Annual Merit Review and Peer Evaluation Meeting

Project ID SA169

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview: Fuel Cell M/HD Vehicle Market Segmentation

Timeline	Barriers (4.5)
Start: September, 2017	A. Future Market Behavior
End: September, 2018	C. Inconsistent Data, Assumptions & Guidelines
35% complete	 Consistent modeling methodology using established cost/price targets
	D. Insufficient Suite of Models and Tools
	 Update powertrain optimization models for M/HDVs and expand the national stock model
Budget	Partners
Budget Total Project Funding: \$150k	 Partners University of Vanderbilt – Modeling Dr. Yuche Chen
BudgetTotal Project Funding: \$150kFY18: \$150k	PartnersUniversity of Vanderbilt – Modeling• Dr. Yuche ChenCummins, Toyota, FedEx, Nikola – Peer Reviewers
BudgetTotal Project Funding: \$150k• FY18: \$150kTotal DOE funds received to date: \$150k	 Partners University of Vanderbilt – Modeling Dr. Yuche Chen Cummins, Toyota, FedEx, Nikola – Peer Reviewers

Relevance (1/2): FCTO Systems Analysis Framework

Fuel Cell M/HDV Market Segmentation Integrates System Analysis Framework:

- Leveraging and expanding existing systems analysis models
- Systems analysis approach using established cost and price targets

implementation

Acronyms

FASTSim: Future Automotive Systems Technology Simulator
GPRA: Government Performance and Results Act
H2A: Hydrogen Analysis
M/HDV: Medium/Heavy-Duty Vehicles
SERA: Scenario Evaluation and Regionalization Analysis
TCO: Total Cost of Ownership

Analysis Framework

- Cost estimation (TCO)
- Stock modeling
- Energy resource utilization
- H₂ supply-chain optimization

H2A production and

Models & Tools

FASTSim

• SERA

VISION

- FCTO Program Targets
 GPPA Targets
- GPRA Targets

Relevance (2/2): FCEV Market Segmentation Objectives

FY18 Objectives:

- To provide industry, government, and non-government stakeholders a broad scoping assessment of medium/heavy duty fuel cell vehicle market opportunities across different classes, vocations, regions, and time
- 2. Assess technical *barriers and opportunities* for improvement in the medium/heavy duty fuel cell vehicle technology space to guide DOE *investment* in advanced technologies

The FCEV Market Segmentation project aims to identify the most promising markets for medium/heavy duty vehicles using a systems analysis approach with established technology and cost targets

Approach (1/4): Analysis Method Integrates Multiple Models

Orange = Data Green = Model Blue = Results

Future Automotive Systems Technology Simulator (FASTSim)

 Powertrain cost optimization using vehicle attributes and vocations

Scenario Evaluation and Regionalization Analysis (SERA)

- National stock model based on VISION model, IHS/Polk data
- Stock, VMT, and fuel consumption disaggregated by region, vehicle, vocation, and time
- Total cost of ownership (TCO) analysis using regional-, vehicle-, vocation-, and time-specific detail

Cost Modeling Stock Modeling (FASTSim) (SERA, VISION) **Adoption Rate** Modeling (TCO, SERA) **Vehicle Segment Market Potential**

The combination of FASTSim and SERA will allow for geographically explicit stock modeling and fuel cell M/HDV market potentials

Approach (2/4): Powertrain cost optimization using FASTSim

Weight

FASTSim Cost Modeling Steps

- 1. Vehicles and vocations determined by market share data
- 2. Fleet DNA data used to obtain drivecycle data for each vehicle class/vocation combination
- 3. The Drive-Cycle Rapid Investigation, Visualization, and Evaluation (DRIVE) tool used to create representative drive-cycles
- 4. Vehicle attribute and GPRA cost targets (2018/2040) data input
- 5. Vehicle and vocation drive-cycle data used to optimize vehicle cost

Approach (3/4): SERA M/HDV Stock Modeling

SERA Stock Modeling Steps

- 1. Determine data availability across various data sources
 - a) VISION Model
 - Historic and future sales and market share by vehicle class and fuel type
 - Annual vehicle-miles-travel (VMT), survival rate, and fuel economy
 - b) IHS/Polk
 - Historic sales, market share data by vehicle and vocation
 - c) VIUS
 - Historic sales, market share data
 - Annual VMT, fuel efficiency
- 2. Reconcile data sources, determine which to use
- 3. Incorporate data into SERA model, iterate until agreement between VISION and SERA

Develop SERA stock model based on various data sources to track vehicle population, VMT, and energy usage over time and region

Accomplishments and Progress (1/6): FASTSim: Powertrain cost optimization

FASTSim Cost Modeling Step Progress

- (Complete) Selected initial set of vehicles and vocations based on literature¹ and VIUS data
- 2. (Complete) Drive-cycle data for each vehicle class/vocation extracted from Fleet DNA
- **3.** (Complete) The DRIVE tool has been used to create representative drive-cycles

Vehicle Class	Vocation
Class 2b	Small Van
Class 3	Enclosed Van
Class 3	School Bus
Class 3	Service, Utility Truck
Class 4	Walk-In / Multi-Stop, Step Van
Class 5	Utility, Tow Truck
Class 6	Construction, Dump Truck
Class 7	School Bus
Class 8	Construction, Dump Truck
Class 8	Line Haul
Class 8	Refuse, Garbage Pickup
Class 8	Tractor Trailer

Vehicles and vocations determined and drive-cycle data obtained

Accomplishments and Progress (2/6): Powertrain cost optimization using FASTSim

FASTSim Cost Modeling Step Progress

- (In Progress) FASTSim is being updated to optimize M/HDV with cost targets (GRPA, FCTO) and vehicle attribute data²
- 5. (In Progress) Vehicle and vocation cost optimization and validation is on-going

Vehicle (Class)	Drag Coefficient	Frontal Area (m²)	Glider Mass (kg)	Center of Gravity Height (m)	
Enclosed Van (3)	0.71	6	3700	0.31	
Parcel Delivery (4)	0.70	6	3700	0.31	
Regional Truck (8)	0.80	9.5	13600	0.53	
Line Haul (8)	0.6	8.5	13600	0.53	
Transfer Truck (8)	1	5.6	13600	0.53	
Drayage Truck (8)	0.8	6	13600	0.53	

 Preliminary results for conventional, HEV, BEV, and FCEV powertrains (PHEV ongoing)

• FCTO Ultimate targets are used for 2040

FASTSim is being updated and validated to optimize M/HDV vehicles

5	7 Target		Ultimate
	Battery Mass [kg/kWh]	4.2	2.5
	Battery Price HEV (\$/kW)	20.0	13.0
Battery	HEV Battery Cost [\$/kWh]	194.4	80.0
	PHEV Battery Cost [\$/kWh]	194.4	80.0
	PEV Battery Cost [\$/kWh]	194.4	80.0
	Hydrogen storage (kWh/kg)	1.5	2.2
	Fuel cell specific power (kW/kg)	0.65	0.65
Fuel Cell	Fuel cell cost (\$/kW)	40	30
	Hydrogen tank cost (\$/kWh)	10	8
	Hydrogen fuel price (\$/kg)	4	4

2. Wang, L. et al. "Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle," SAE Technical Paper 2015-01-2773, 2015.

Accomplishments and Progress (3/6): FASTSim Results: Class 8 Line Haul Case Study

~

iminal iminal								
Class & Line Haul	2020 Technology P ^{re}			2040 Technology				
	BEV	FCEV	HEV	CONV	BEV	FCEV	HEV	CONV
Est. MSRP (\$k)	470	260	150	140	250	240	150	140
Fuel economy (mi/gge)	15	10	7	7	16	10	7	7
Mass (thousand kg)	33	30	29	28	30	29	29	28

FASTSim Class 8 Line Haul Upfront Cost

FASTSim Class & Line Haul Key Results

- Preliminary FASTSim results indicate upfront Class 8 Line Haul (500 mile range) FCEV costs more than conventional but less than BEV
- FCEVs have higher fuel economy but are heavier than conventional vehicles (to be validated)
- Fuel, O&M, Opportunity costs, and other potential value streams are not accounted for in FASTSim but will be included in the TCO analysis

FASTSim results provide upfront vehicle costs, fuel economy, and mass for TCO analysis

Accomplishments and Progress (4/6): SERA M/HDV Stock Model: Data Comparison

SERA Stock Modeling Steps

- 1. (Complete) Determine and compare data availability across various data sources
- 2. (In progress) Incorporate vehicle data into SERA model, match VISION model

- Polk data shows larger MDV/HDV stock populations
- Fuel economy data from VIUS matches VISION Class 7-8
- VISION and VIUS VMT are consistent for both classes

Polk data used to disaggregate VISION population, VISION fuel economy and VMT will be used

Accomplishments and Progress (5/6) Hypothesized SERA TCO Visualization

Smaller vehicle population

Larger vehicle population

Vehicle Weight **Class 7/8** Class 5/6 Class 3/4

Hypothesized SERA TCO Visualization

- SERA TCO results will estimate competitive nature of FCEVs for each class/vocation
- Competitive FCEV TCO will result in higher technology adoptions and future market shares
- Hydrogen demand can be determined based on FCEV M/HDV adoption over time and region in the US

Range Requirement

Accomplishments and Progress (6/6) Responses to Reviewers' Comments

• N/A as this is a new, FY18 project for FCTO

Collaboration and Coordination

- Vanderbilt University *Modeling*
 - Dr. Yuche Chen supporting vehicle stock model development
- Cummings, Toyota, FedEx, Nikola *Peer Reviewers*

Remaining Challenges and Barriers

FASTSim Model

- Continue to validate model outputs for vehicle cost, fuel economy, and weight
- Evaluate climate effects on auxiliary power load

SERA Stock Model

- Need to evaluate tradeoffs between having increased stock model detail (region, vocation, and vehicle specific VMTs, survival rates, and fuel economies) and exactly matching the VISION model
- Spatial distribution of VMT across regions could be challenging give time and resource limits. Could be a potential future enhancement

SERA Total Cost of Ownership Analysis

 Limited data on fuel cell and battery truck upfront costs, weight, O&M costs, opportunity costs, and other potential value streams

Future Work and Potential Work

 $\mathbf{\nabla}$

 $\mathbf{\nabla}$

 $\mathbf{\nabla}$

FY18 Project Plan

FASTSim Cost Modeling

- Define vehicles/vocations
- Obtain relevant data
- Complete modeling

SERA Stock Modeling

- Evaluate data sets
- Develop stock model

SERA TCO Modeling

- Integrate FASTSim outputs input into SERA
- Acquire indirect cost data
- Complete TCO modeling
- Sensitivity analysis

Any proposed future work is subject to change based on funding levels

FASTSim Cost Modeling (FY18)

- Continue updating and validating FASTSim M/HDV outputs (cost, fuel economy, weight)
- Complete modeling for all vehicles/vocations

SERA Stock Modeling (FY18)

- Integrate VISION and Polk/IHS data into SERA model
- Verify alignment between VISION and SERA

SERA TCO Modeling (FY18)

- Review and compile available data on O&M, opportunity costs, and other value streams
- Complete spatial and temporal TCO modeling
- Complete sensitivity analysis on cost assumptions

Potential Future Scope (FY19+)

- Integrate with H2@Scale through temporal and spatial supply, demand, and storage requirements
- Integrate TCO data into ADOPT vehicle choice model
- Evaluate cost-volume feedback loop between production volume ramp up and cost curves
- Evaluate other vehicle segments (rail, marine)

Technology Transfer Activities

- FASTSim is currently available (LDV) and the updated version (with M/HDV capabilities) will be made available after project completion
 - <u>https://www.nrel.gov/transportation/fastsim.html</u>
- Licensing of *SERA* model is being considered
- Analysis visualizations may be added to NREL's Hydrogen Demand and Resource Analysis (HyDRA) tool

– <u>https://maps.nrel.gov/hydra/</u>

Summary

Relevance

- Expansion of systems analysis models that assess cost and market barriers to fuel cell vehicle adoption
- Provide stakeholders a broad assessment of medium/heavy duty fuel cell vehicle market opportunities and guide future DOE investment

Approach

- FASTSim for vehicle optimization to obtain vehicle cost, fuel economy, and weight
- SERA for stock modeling using VISION, Polk/IHS data
- SERA TCO modeling direct costs, opportunity costs, and other value streams

Accomplishments and Progress

- Vehicle segmentation and drive-cycle data obtained for FASTSim analysis
- Initial Class 8 Line Haul FASTSim results acquired, undergoing verification/validation
- VISION, Polk/IHS, and VIUS data evaluated and being integrated into SERA

Collaboration

- Vanderbilt University (modeling); Cummings, Toyota, FedEx, Nikola (peer reviewers) Current and Potential Future Work
- Complete validation of updated M/HDV FASTSim model and results
- Complete SERA stock model and alignment with VISION
- Complete TCO modeling by integrating FASTSim results and cost data into SERA
- **Potential:** Integrate results into **H2@Scale** analysis temporal/spatial analysis

Thank You

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

