2018 DOE Hydrogen and Fuel Cells Program Annual Merit Review

Analysis of Cost Impacts of Integrating Advanced On-Board Storage Systems with Hydrogen Delivery

Amgad Elgowainy (PI), Ed Frank, Yusra Khalid, and Jui-Kun Peng Argonne National Laboratory

Guillaume Petitpas, Lawrence Livermore National Laboratory Daryl Brown, Energy Technology Analysis

June 14, 2018

SA170

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

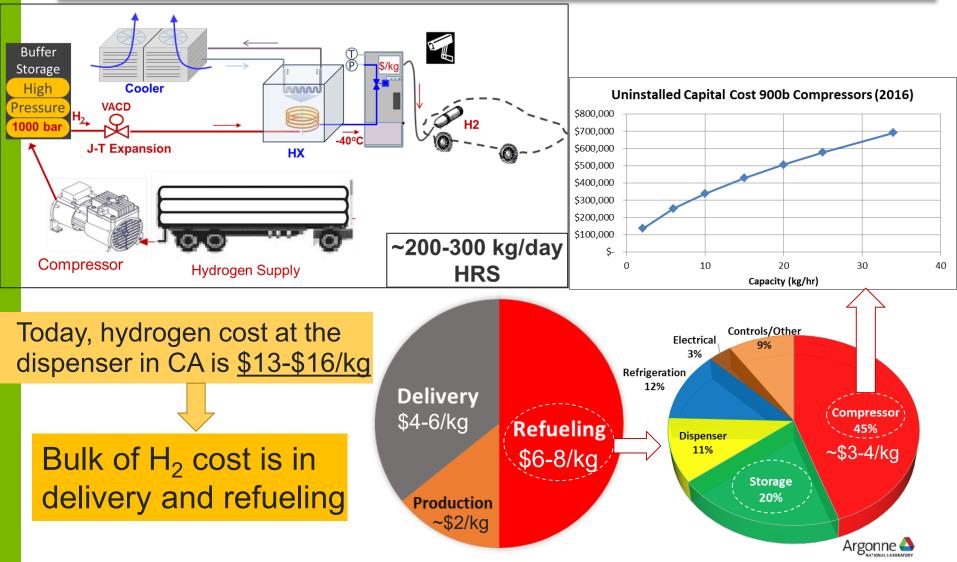
- Start: October 2017
- End: Determined by DOE
- % complete (FY18): 70%

Barriers to Address

- Inconsistent data, assumptions and guidelines
- Insufficient suite of models and tools
- Stove-piped/Siloed analytical capability for evaluating sustainability

Budget

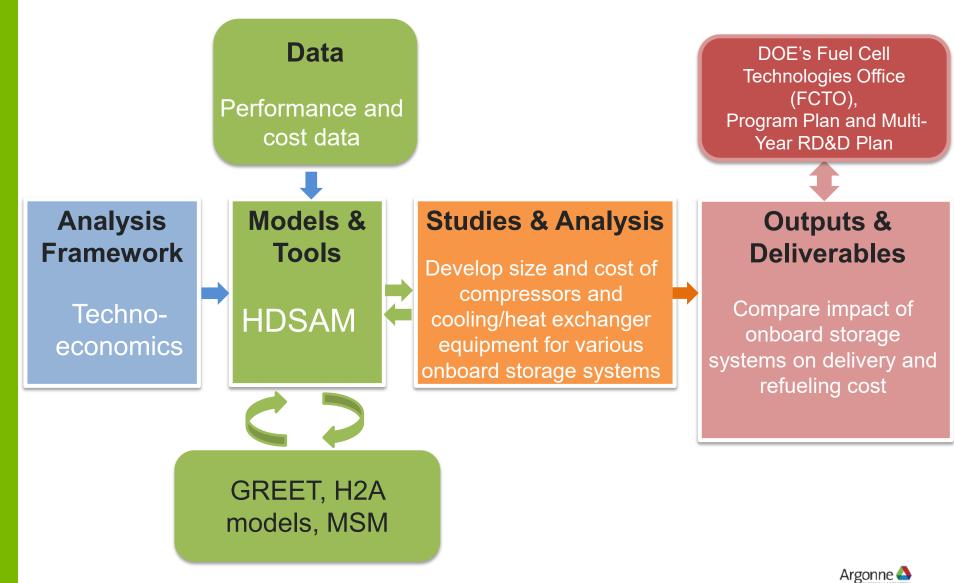
• Funding for FY18: \$260K


Partners/Collaborators

- U.S.DRIVE: Hydrogen Interface Taskforce (H2IT)
- Lawrence Livermore National Laboratory (LLNL)
- Energy Technology Analysis (ETA)

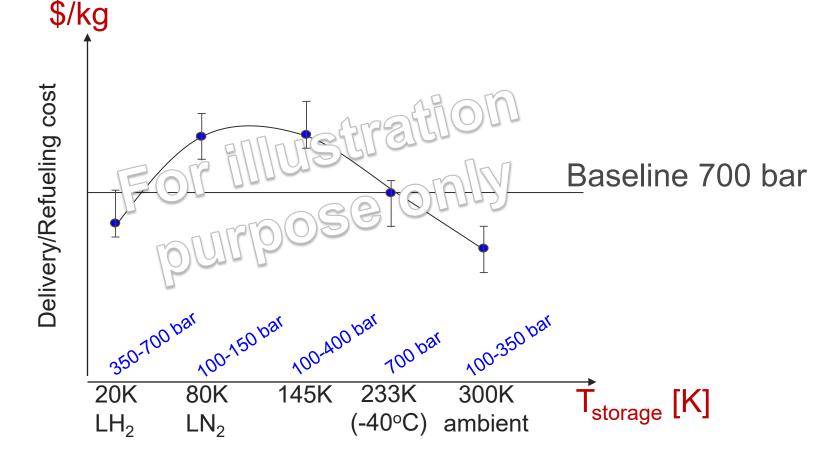
Relevance/Impact

Objective: Evaluate impacts of on-board hydrogen storage systems on delivery and refueling cost


Pathways for consideration – Relevance

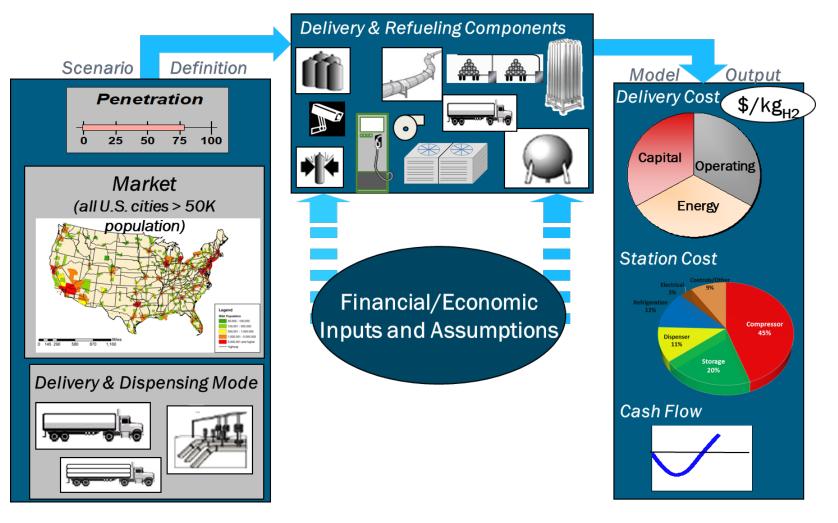
- ✓ 700 bar storage/refueling (baseline)
- ✓ Metal Hydride (MH) storage/refueling
- ✓ Metal Organic Framework (MOF-5) storage/refueling
- Cold Gas storage/refueling
- Cryo-compressed hydrogen (CcH2) storage/refueling

Storage System	System Model Source	Configuration	Operating Temperature	Operating Pressure
700 bar Compressed H2	Baseline	Single Tank CF Overwrap	Ambient (-40 to 85°C)	5 bar to 875 bar
350 bar Cryo-compressed	ANL	Type 3 Tank with MLVI	35 to 93 K	5 to 350 bar
700 bar Cryo-compressed	ANL	Type 3 Tank with MLVI	35 to 123 K	5 to 700 bar
400 bar Cold gas	ANL	Type 4/CF/MLVI	180 to 195 K	5 to 400 bar
100 bar Cryo-Adsorbent cryo-cooled	ANL	MOF-5 within Type 3 Tank with MLVI	145 to 215 K	5 to 100 bar
Metal hydrides	ANL	Reverse engineering material within Type 3 Tank	Ambient (-40 to 120ºC)	5 to 100 bar


Impact of onboard storage system on delivery and refueling cost – Relevance/Approach

Outcome of Analysis – Approach

Compare impact of P-T tradeoffs on hydrogen delivery and refueling cost [\$/kg]



Required temperature/pressure for various onboard storage systems

P & T are key for refueling cost

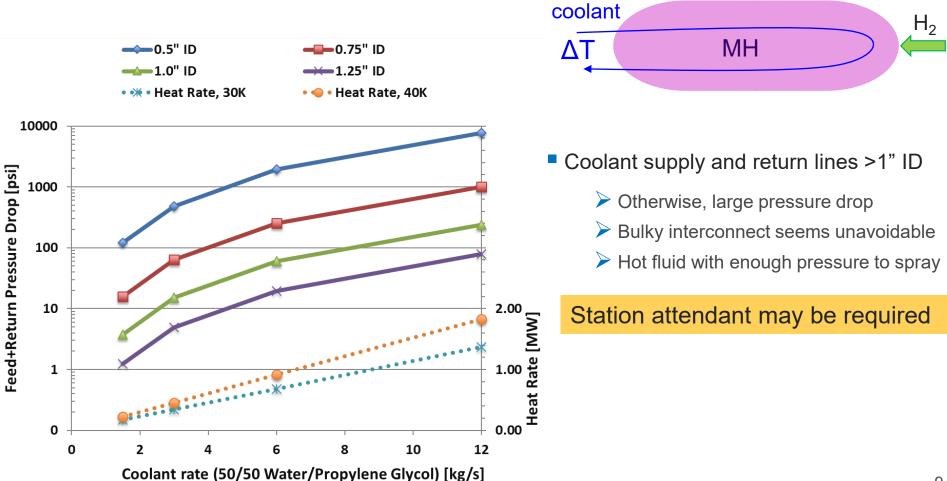
6

Develop new delivery and refueling pathways in HDSAM for onboard systems – Approach

https://hdsam.es.anl.gov/index.php?content=hdsam

Metal Hydride Pathway – Approach

Thermolytic, reversible metal hydride


 $M + x/2 H_2 \rightleftharpoons MH_x + Heat$

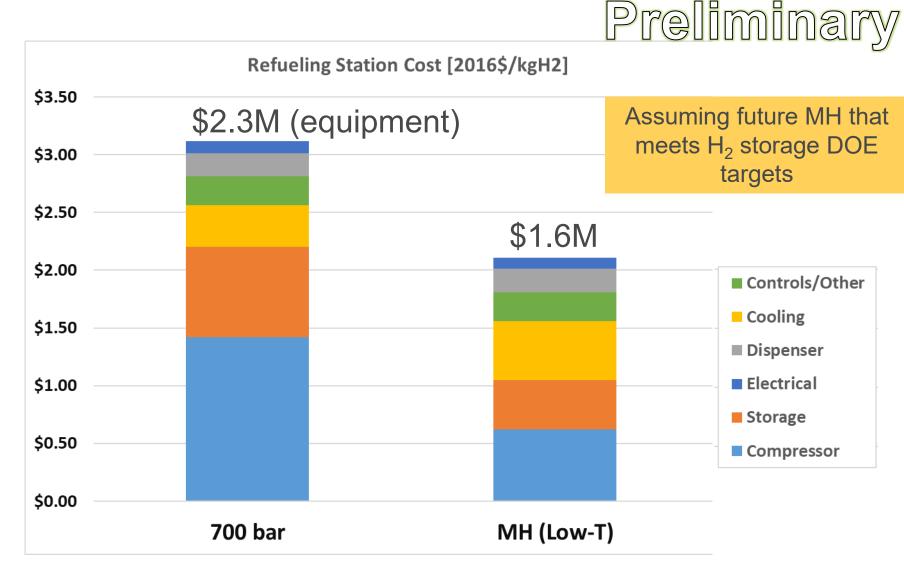
- Exothermic charging, so refueling equipment must deliver hydrogen (100 bar, 300K) and remove heat of adsorption and compression
- Heat of compression is additional 0.1 MW
- Hydriding enthalpy is constrained to <u>27–41</u> kJ/mol-H₂

-Average Cooling duty 0.4–0.6 MW for refueling 5 kg H₂ in 3 minutes -Peak cooling can be 1 MW

Metal Hydride Pathway: Kinetics – Accomplishment

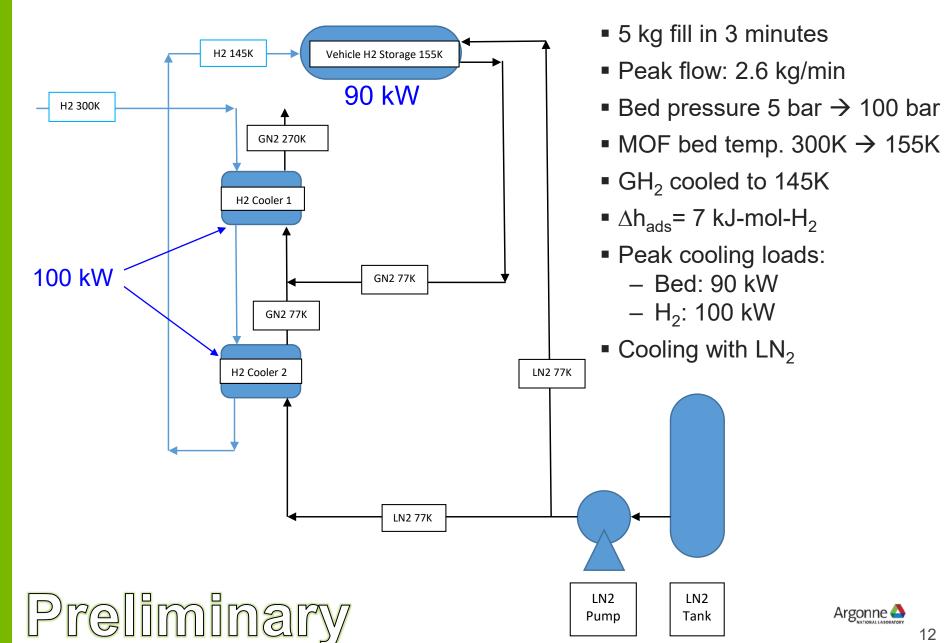
- Charging rate is affected if MH is either too cold or too hot
- → Must constrain $\Delta T \rightarrow 30-40 K$
 - 1 MW cooling via dm/dt and Cp rather than by ΔT

Developed HX Design for Two Metal Hydride – Accomplishment


- (1) Low-temperature, low-enthalpy
- (2) High-temperature, high-enthalpy

Scenario	Heat Duty	Coolant T _{inlet}	Coolant T _{outlet}	Coolant m [°]		HX Weight	Fan Power	Pump Power	HX Cost
	MW	°C	°C	Kg/s	ft	lb	HP	HP	\$
Low-T, Low-H	0.6	100	61	3.6	14x13	12,000	8	2	52,000
High-T, High-H	1.1	168	129	10.3	14x5	2,700	3	9	16,000
						_		_	

- HX design using Aspen
- Ambient Temperature 38°C
- Tube-fin HX, tube diameter = 0.75"
- Steel tubes/Aluminum fins, G-fins, 14 FPI
- Low-T: 50/50 (wt%) propylene glycol/water coolant; 6 tube rows, 6 passes
- High-T: 92/8 (wt%) ethylene glycol/water coolant; 4 tube rows, 4 passes
- Low-T: HX area 19,000 ft², air face velocity = 6 ft/s
- High-T: HX area 3,200 ft², air face velocity = 12 ft/s
- HX cost is uninstalled, installation factor = 2

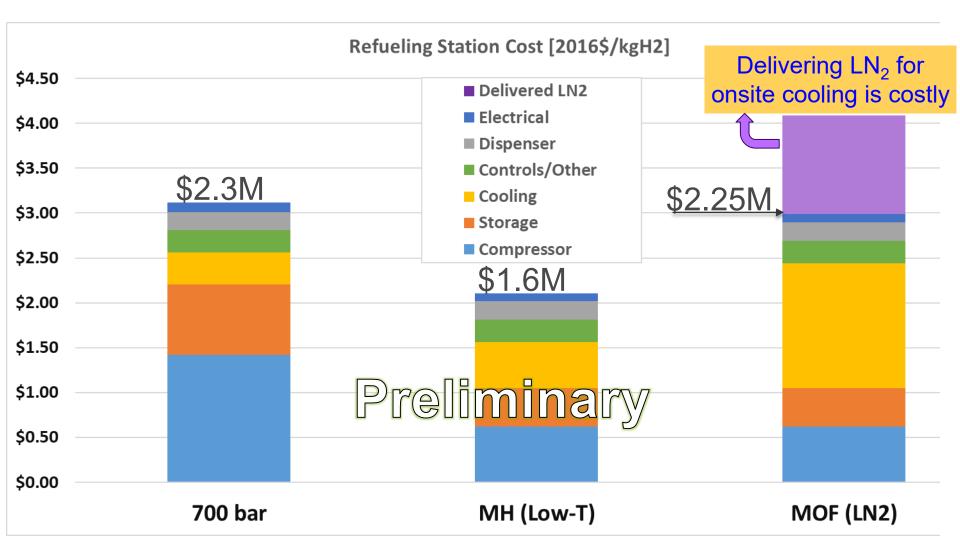

Preliminary

Metal Hydride Pathway: Refueling Cost – Accomplishment

1000 kg/day station Capacity, 0.8 Capacity factor, 20bar H₂ supply, 4 dispensers

Designed H₂ Cooling System for MOF Refueling – Accomplishment

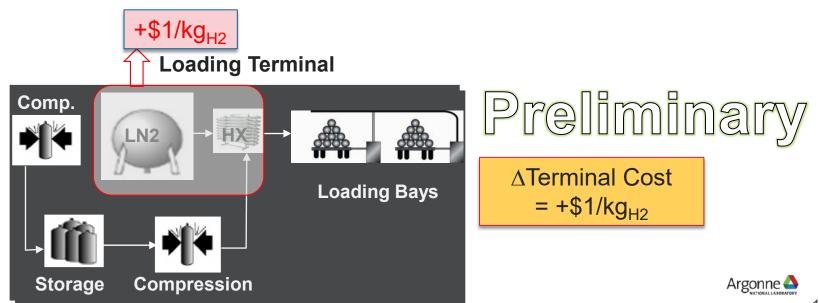
Estimated HX Cost for MOF Refueling – Accomplishment

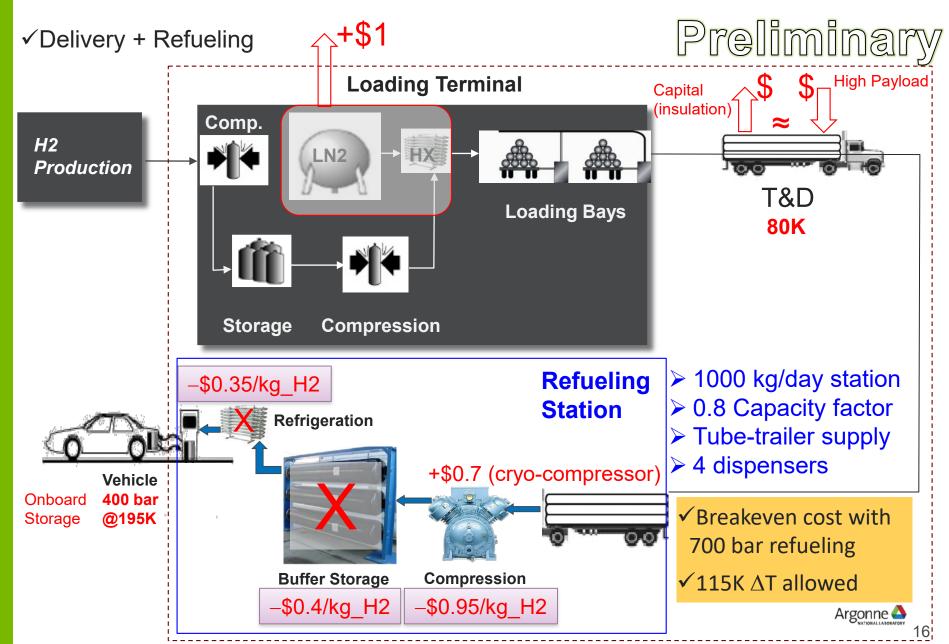

Scenario	Heat Duty	H ₂ T _{inlet}	H ₂ T _{outlet}	HX UA	HX Cost (per dispenser)
	kW	K	K	W/K	\$
Cooler 1	94	300	151	1900	170,000
Cooler 2	4	151	145	45	7,000
					Drolli

Preliminary

- LN₂ delivered to station in volume (~5000 gallons) at \$0.3/gallon (\$0.1/kg_{LN2})
- 11 kg (3.6 gallon) of LN₂ per kg of H₂ dispensed \rightarrow 55 kg (18 gallon) LN₂ per vehicle
- Daily LN_2 use = 8,800 kg (2900 gallons) of LN_2 for 800 kg_{H2} dispensed per day
- Preliminary LN₂ storage cost based on LH₂ storage cost
- LN₂ tank (6000 gallons) cost (uninstalled) = \$185,000 (\$140,000 future high volume)
- LN₂ pump capacity = 30 kg/min
- Pump cost (uninstalled) = \$70,000 (per dispenser, high volume)
- HX cost is today low volume (uninstalled), high volume @55%, installation factor = 2

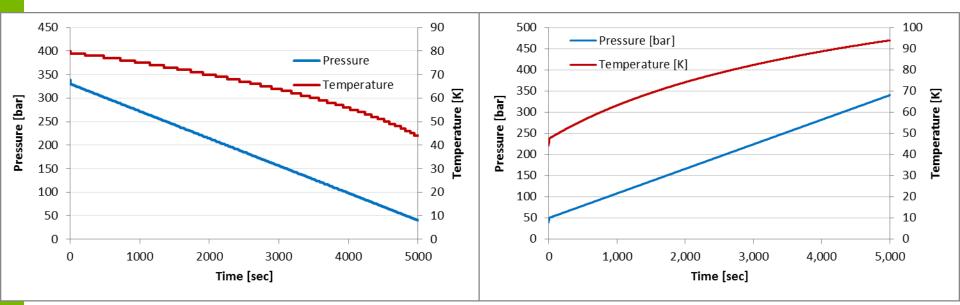
Based on assumptions of future MOF system that meets DOE H₂ storage targets


Evaluated Refueling Cost of Metal Hydride and MOF vs. 700 bar onboard Storage – Accomplishment


1000 kg/day station Capacity, 0.8 Capacity factor, 20bar H₂ supply, 4 dispensers

Evaluated Cost of Tube-Trailer Terminal for Cold gas Pathway – Accomplishment

- 8 kg_{LN2} is required to cool 1 kg_{H2} gas from 300K to 80K
- For \$0.07 cost of 1 kg_{LN2} (range \$0.07-\$0.16/ kg_{LN2}) → +\$0.55 to cool 1 kg_{H2} gas from 300K to 80K
- \$10M capital for 2M gallons LN_2 dewar (5-day supply) → +\$0.15 per kg_{H2}
- \$20M capital for LN₂ → H₂ heat exchanger/circulating pump → +\$0.3 per kg_{H2}



Estimated Cost Of Cold H₂ Gas Pathway Relative to 700 bar Refueling with Tube-Trailer Supply – Accomplishment

Evaluated Impact of Cold H₂ Gas Loading and Unloading on H₂ Temperature – Accomplishment

Non-ideal expansion and compression (entropy generation)

Unloading Tube Trailer

Loading Tube Trailer

Simulations show +13°C with each unloading/loading cycle ✓ Assuming no external heat gain

Argonne

Cold H₂ Gas Pathway – Accomplishment

- Impact of heat of compression on temperature rise is significant

Other considerations:

- Impact of warm compressor and lines (thermal mass)
 e.g., warm equipment after long idle time
- Impact of warm vehicle tank (>45K at start of refueling)

Summary – Accomplishment

- Evaluated impact of onboard hydrogen storage options on refueling cost
 - Metal Hydride (MH) \rightarrow 100 bar, near ambient temperature
 - Metal Organic Framework (MOF) \rightarrow 100 bar, 145K
 - − Cold Hydrogen Gas \rightarrow 400 bar, 195K
 - ✓ Compare to 700 bar refueling
- MH provides the largest potential for refueling cost reduction
 - Cost reduction ~ $1/kg_{H2}$
 - Most of the cost reduction is attributed to low refueling pressure
 - Hose size is a concern \rightarrow station attendant may be needed
- MOF shows increase in cost of refueling despite low refueling pressure
 - Most of the cost increase is attributed to LN₂ onsite cooling
 - Cost of delivered LN_2 adds \$1/kg_{H2}
- Cold gas provides limited refueling cost reduction potential
 - Breakeven with 700 bar refueling cost
 - Impact of entropy increase due to isenthalpic expansion, compression and components' thermal mass must be carefully considered
- MH, MOF and cold gas onboard storage systems require varied refueling pressure and temperature, thus impacting refueling cost differently Argonne

Collaborations and Acknowledgments

- Guillaume Petitpas, Lawrence Livermore National Laboratory supported the calculations of cold gas pathway
- Daryl Brown of Energy Technology Analysis supported the MOF pathway analysis
- Mike Veenstra, Ford Motor Company, provided technical information and general guidance and support
- Jesse Adams (DOE) provided technical information and general guidance and support
- David Tamburello of Savannah River National Laboratory provided performance data for MOF systems
- Kriston Brooks and Ewa Ronnebro of Pacific Northwest National Laboratory provided performance data for MOF systems
- Terry Johnson of Sandia National Laboratory provided performance data for MH systems
- U.S.DRIVE Delivery and Storage Tech Teams

Future Work

- Confirm design, performance and cost of refueling equipment via vendor quotes
 - Heat exchangers
 - $-LN_2$ storage and pump
 - Low-pressure compressor
 - Terminal cost and cryo-compressor for cold H₂ gas pathway
- Verify impact of on temperature increase for cold H₂ gas pathway
- Expand system boundary to include delivery + refueling cost for consistent comparison
- Consider LH₂ for 77K MOF refueling
- Consider ambient temperature MOF refuleing
- Include cryo-compressed H₂ pathway in the comparative analysis
- Implement new pathways in HDSAM
 - Conduct independent model review by experts
 - Release updated HDSAM
- Conduct sensitivity analysis on the key cost parameters
- Document data and analysis in peer-reviewed publication

Project Summary

- Relevance: On-board hydrogen storage systems can have large impact on delivery and refueling cost
- Approach: Develop new delivery and refueling pathways in HDSAM for onboard systems
- Collaborations: Collaborated with consultants and experts from other national labs (ETA, LLNL) and sought data and guidance from experts (industries and across US DRIVE technical teams)

Technical accomplishments and progress:

- Evaluated impact of MH, MOF and cold H₂ gas on refueling cost
- MH provides the largest potential for refueling cost reduction compared to 700 bar refueling (~\$1/kg_{H2})
- MOF shows increase in cost of refueling mainly due to LN₂ onsite cooling
- Cold gas refueling cost breakeven with 700 bar refueling
 - Impact of entropy increase due to isenthalpic expansion, heat of compression, and components' thermal mass must be carefully considered

• Future Research:

- Confirm design, performance and cost of refueling equipment via vendor quotes
- Expand system boundary to include delivery + refueling cost for consistent comparison
- Implement new pathways in HDSAM
- Conduct sensitivity analysis on the key cost parameters

aelgowainy@anl.gov

Argonne 🏊

Acronyms

- AMR: Annual Merit Review
- ANL: Argonne National Laboratory
- CA: California
- CcH₂: Cryo-compressed
- CF: Carbon Fiber
- Cp: Specific heat at constant pressure
- DOE: Department of Energy
- ETA: Energy Technology Analysis
- FCEV: Fuel Cell Electric Vehicle
- FCTO: Fuel Cell Technologies Office
- FY: Fiscal Year
- GH₂: Gaseous Hydrogen
- GN₂: Gaseous Nitrogen
- GREET: Greenhouse gases, Regulated Emissions, and Energy use in Transportation
- H: Enthalpy
- ∆h_{ads}: Enthalpy of Adsorption
- H₂: Hydrogen
- H2A: Hydrogen Analysis
- HDSAM: Hydrogen Delivery Scenario Analysis Model
- HP: Horse Power
- HRS: Hydrogen Refueling Station
- HX: Heat Exchanger

- ID: Inner Diameter
- LxW: Length x Width
- LH₂: Liquid Hydrogen
- LLNL: Lawrence Livermore National Laboratory
- LN₂: Liquid Nitrogen
- m°: Mass Flow Rate
- MH: Metal Hydride
- MLVI: Multi-Layer Vacuum Insulation
- MOF: Metal Organic Framework
- MSM: Macro-System Model
- P: Pressure
- RD&D: Research, Development, and Demonstration
- S: Entropy
- T: Temperature
- ΔT: temperature difference
- US: United States
- US eq. gal: U.S. equivalent gallon
- US DRIVE: U.S. Driving Research and Innovation for Vehicle efficiency and Energy sustainability
- VACD: Variable Area Control Device
- WTW: Well-to-Wheels

