

Reduced-Temperature Thermochemical Redox Reactions

PI: Arun Majumdar, William Chueh Presenter: Shang Zhai

Stanford Linear Accelerator Center/Stanford University June 13, 2018

Project ID: SLAC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Lawrence Livermore National Laboratory

Project Vision

To reduce temperature requirement of thermochemical redox reactions by using polycation oxides that can lower phase transition temperature.

Project Impact

To develop oxides for two-step thermochemical water splitting (TWS) cycle \leq 1000 °C, which is relevant for large scale hydrogen production.

Project Partner

Michael Toney, SLAC

Start/End Date	09/01/2016-06/30/2018
Total Funding	\$150,000

- **Project goal**: Developing novel metal oxides to produce large scale hydrogen at <\$2/kg, specifically by reducing thermochemical reaction temperature.
- This reporting period:
 - Studied entropy stabilization effect on two-step TWS performance at reduced temperature
 - Identified redox active element in the poly-cation oxide (MgFeCoNi)O_x
 - Specified phase swing during the TWS cycle
 - Stable ten-cycle performance

Approach-Summary

Barriers

Narrow thermodynamic window to do two-step TWS within 1000 °C.

Project Motivation

Temperature (°C)

Temperature (°C)

Entropy-stabilization was found to lower phase transition temperature.

(MgCoNiCuZn)O

HydroGEN: Advanced Water Splitting Materials

 Poly-cation oxide (FeMgCoNi)O_x undergoes phase swing in twostep TWS cycle.
As synthesized

As synthesized

After 10 cycles at 1300-800 $^{\circ}\mathrm{C}$

70

 Poly-cation oxide (FeMgCoNi)O_x outperforms state-of-the-art two-step TWS materials.

Normalized yield: measured H_2 yield normalized by the yield if Fe goes through complete Fe²⁺/Fe³⁺ transition during the TWS cycle.

 Fe is the redox active element relevant for two-step TWS of (FeMgCoNi)O_x

• Kinetics study of poly-cation oxide (FeMgCoNi)O_x at T_H = 1300 °C and T_L = 800 °C.

Poly-cation oxide (FeMgCoNi)O_x has good H₂O to H₂ conversion.

- Outlook and projected outcomes for the remainder of the project's budget period 1 scope of work:
- Optimizing compositions of poly-cation oxides to further improve its TWS performance.

Collaborator	Project Role
Majumdar Group	Material synthesis; Thermochemical performance characterization; X-ray diffraction
Chueh Group	
Toney Group	Synchrotron x-ray absorption spectroscopy

- To develop new materials that can be used for two-step TWS below 1000 °C.
- Mechanism study: what are the role of redox inactive Mg, Co and Ni in the thermochemical redox reactions?
- **Thermodynamic** hydrogen production **limit** of specific poly-cation oxide(s).
- To identify reaction **rate-determining step(s)**.

- Approach
 - Tuning entropy-stabilization in poly-cation oxide to lower thermochemical redox reaction temperature
- Performance of (FeMgCoNi)O_x
 - Two-step TWS within 1100 °C
 - High hydrogen yield and good H₂O to H₂ conversion
 - Phase swing identified: coexistence of rocksalt/spinel phases
 - Fe is the redox active element for two-step TWS
 - Large portion of Fe is active in redox reactions

Technical Back-Up Slides

Spontaneous reaction conditions

 Temperature dependence neglected HydroGEN: Advanced Water Splitting Materials

HydroGEN: Advanced Water Splitting Materials

Stagnation flow reactor system

