

System Level Analysis of Hydrogen Storage Options

R.K. Ahluwalia, J-K Peng, H.S. Roh, and D.D. Papadias

DOE Hydrogen and Fuel Cells Program 2018 Annual Merit Review and Peer Evaluation Meeting Washington, D.C. June 13-15, 2018

Project ID: ST001

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project start date: Oct 2009
- Project end date: N/A
- Project continuation and direction determined annually by DOE

Budget

- FY17 DOE Funding: \$840 K
- FY18 DOE Funding: \$500 K

Barriers

- H₂ Storage Barriers Addressed:
 - A: System Weight and Volume
 - B: System Cost
 - C: Efficiency
 - E: Charging/Discharging Rates
 - J: Thermal Management
 - K: Life-Cycle Assessments

Partners/Interactions

- PNNL, Hexagon Lincoln (HL)
- BMW, LLNL
- Ford, ORNL, UM
- Delivery Team, Hydrogen Interface Taskforce (H2IT), ANL-H2A, ANL-HDSAM
- Strategic Analysis

Relevance and Impact

Develop and use models to analyze the on-board and off-board performance of physical and material-based automotive hydrogen storage systems

- Conduct independent systems analysis for DOE to gauge the performance of H₂ storage systems
- Provide results to material developers for assessment against system performance targets and goals and help them focus on areas requiring improvements
- Provide inputs for independent analysis of costs of on-board systems.
- Identify interface issues and opportunities, and data needs for technology development
- Perform reverse engineering to define material properties needed to meet the system level targets

Impact of FY2018 work

- Compared to Type 4 700-bar cH₂ tanks currently in use in LDVs, 500-bar CcH₂ can achieve 70% improvement in gravimetric capacity, 90% higher volumetric capacity, and 70% saving in carbon fiber composite (CF)
- Established targets for room temperature sorbents: 106±8 g-H₂/kg excess uptake at 100 bar when compacted to 500±35 kg/m³ bulk density
- Proposed and demonstrated a concept of reinforcing the dome section with an elongated boss to realize >10% saving in CF composite for Type 4 tanks
- Determined the cost of producing/hydrogenating H_2 carriers, transmitting to and dehydrogenating them at city gate, and storing H_2 (\$5.43-\$6.02)

Approach

- Develop thermodynamic and kinetic models of processes in physical, complex metal hydride, sorbent, and chemical H₂ storage systems
 - Address all aspects of on-board and off-board storage targets, including capacity, charge/discharge rates, emissions, and efficiencies
 - Perform finite-element analysis of compressed hydrogen storage tanks
 - Assess improvements needed in materials properties and system configurations to achieve storage targets
- Select model fidelity to resolve system-level issues
 - On-board system, off-board spent fuel regeneration, reverse engineering
 - Conduct trade-off analyses, and provide fundamental understanding of system/material behavior
 - Calibrate, validate, and evaluate models
- Work closely with DOE technology developers, national labs and others in obtaining data, and provide feedback
- Participate in meetings and communicate approach and results to foster consistency among DOE-sponsored analysis activities

Accomplishments: FY2018 Tasks and Progress

- 1. Cryo-compressed H₂ Storage for Light Duty Vehicles (FY2018 Q1)
 - Updated refueling model to include heat transfer in dispenser lines and completed GCtool simulations for LDVs
 - Prepared and submitted a paper on CcH₂ storage for fuel cell electric buses
- 2. H₂ storage in room-temperature (RT) sorbents (FY2018 Q2)
 - Modeled adsorption isotherms for sorbents with metal ions capable of binding multiple H_2 molecules (ST133)
 - System analysis and reverse engineering of RT H₂ storage in sorbents
- 3. Compressed H_2 storage for medium and heavy duty fuel cell vehicles (FY2018 Q3)
 - Completed scoping analysis of Type 3 700-bar tanks and Type 4 tanks with metal end caps. Published a paper on Type 4 tanks in IJHE.
- 4. Hydrogen carriers for delivery (FY2018 Q4)
 - Support H2@Scale hydrogen distribution network activities

			Date Completed	% Complete
1	Complete system analysis of cryo-compressed hydrogen storage for light duty fuel cell vehicles relative to the 2020 system targets for gravimetric capacity (4.5 wt%), volumetric capacity (30 g/L), and WTE efficiency (60%)	12/17	12/17	100
2	Develop models for sorbents with metal cations capable of absorbing multiple H_2 molecules on single metal site. Conduct system analysis of ambient temperature sorbents relative to the 2020 system targets for gravimetric capacity (4.5 wt%), volumetric capacity (30 g/L), and WTE efficiency (60%)	03/18	03/18	100
3	Conduct ABAQUS analysis of compressed hydrogen storage for medium and heavy duty fuel cell vehicles with emphasis on storage pressure, tank capacity, weight and volume, and packaging configuration	06/18		50
4	Analyze material requirements and energy consumption for storing hydrogen in carriers in support of H2@Scale hydrogen distribution network	09/18		30

Accomplishments: Cryo-Compressed (CcH₂) Hydrogen Storage for FC Buses

Renewed interest in liquid H_2 (LH₂) delivery pathway during transformation to widespread H_2 fuel use

- Gaseous H₂ (GH₂) delivery in tube trailers viable only at small market penetration (<5%)
- Gaseous pipeline delivery and distribution economic at large market penetration (>30%)
- Combination of GH₂ and LH₂ delivery at intermediate market penetration: e.g., 25% GH₂ and 75% LH₂ changing to 85% LH₂ delivery and 15% on-site SMR as market delivery (http://www.arb.ca.gov/regact/2012/cfo2012/cfoisor.pdf)

LH₂-refueled CcH₂ particularly suitable for fleet buses and heavy-duty vehicles

- Limited infrastructure required if the vehicles return to a central depot for overnight parking
- Predictable duty cycles, few extended parking events
- LH₂ pump commercially available, 100 kg/h pumping rate, discharge pressure up to 875 bar

Current practice for FC buses

- H₂ storage as compressed gas at 350 bar, ambient temperature
- Type 3 pressure vessels with aluminum liner and T700 CF composite
- 40 kg H₂ stored in 8 tanks (5 kg per tank), L/D = 5, 5 kg/min refueling rate

Accomplishments: Supercritical CcH₂ Storage for FC Buses

Advantages of 500-bar CcH_2 system over Type-3, 350-bar, RT cH_2 storage systems in current FC buses

- >215% increase in storage density
- >90% higher gravimetric capacity
- 170% higher volumetric capacity
- 47% saving in carbon fiber (CF) composite
- >25% lower cost at 5,000 systems/year annual production

Storage Method	CcH ₂	CcH ₂	cH2	
Storage Pressure	350 bar	500 bar	350 bar	
Usable H ₂	4 x 10 kg	4 x 10 kg	8 x 5 kg	
Liner	2-mm SS	2-mm SS	7.1 mm Al	
Storage Temperature	64 K	70 K	288 K	
Storage Density	70.3 g/L	75.5 g/L	24 g/L	
Gravimetric Capacity	9.6%	8.4%	4.4%	
Volumetric Capacity	46.1 g/L	50.1 g/L	18.5 g/L	
CF Composite	4 x 36 kg	4 x 53.1 kg	8 x 50 kg	
Insulation Thickness	18.2 mm	10.3 mm	NA	
Heat Gain	3.8 W	5.7 W	NA	
Dormancy: 95% Full	7.0 d	7.0 d	NA	
Cost	\$10/kWh	\$11/kWh	\$15/kWh	

Liquid H₂ refueled, supercritical CcH₂ storage system with MLVSI, 0.1 mW/m.K effective conductivity, 3 mTorr vacuum, 7-d dormancy at 95% full

Even greater savings in CF composite and cost at 350-bar storage pressure

Accomplishments: Supercritical CcH₂ Storage for Light Duty Vehicles

Storage Method	CcH ₂	CcH ₂	cH2
Storage Pressure	350 bar	500 bar	700 bar
Usable H ₂	1 x 5.6 kg	1 x 5.6 kg	1 x 5.6 kg
Liner	2-mm SS	2-mm SS	5-mm HDPE
Storage Temperature	62 K	67 K	288 K
Storage Density	71.2 g/L	76.7 g/L	40.2 g/L
Gravimetric Capacity	7.5%	7.0%	4.2%
Volumetric Capacity	35.5 g/L	44.2 g/L	24.6 g/L
CF Composite	1 x 20.0 kg	1 x 29.4 kg	1 x 96 kg
Dormancy			
Insulation Thickness	33.7 mm	14.6 mm	NA
Heat Gain	2.1 W	3.3 W	NA
95% Full	7.0 d	7.0 d	NA
75% Full	33.2 d	26.3 d	NA
60% Full	44.3 d	40.3 d	NA
Cost	\$11/kWh	\$12/kWh	\$15/kWh

Advantages of 500-bar CcH_2 system over Type 4, 700-bar, RT cH_2 storage systems

- ~90% increase in storage density
- ~70% higher gravimetric capacity
- ~80% higher volumetric capacity
- ~70% saving in carbon fiber (CF) composite
- 20% saving in system cost at high volume manufacturing

Integrated Valve Assembly

Accomplishments: CcH₂ Storage: Tools, Models and Data

Failure Modes	Material Properties ¹	Analysis Tools
Static Analysis		
Von Mises stress after autofrettage limited to 95% of yield stress (DOT-NGV2)	Stress-strain curves: liner, CF	ABAQUS/WCM
Burst pressure (2.25 safety factor)	Translation efficiency	
Leak-before-break (LBB)	Fracture toughness	
Liner separation	Adhesive peel test	
Fatigue Analysis		
5500 pressure cycles for LDVs	Strain-life curve	FE-SAFE
15,000 pressure cycles for MDVs and HDVs		
Combined pressure-temperature cycling	CTE: liner, CF	Thermo-mech. fatigue
Buckling Analysis		-
Liner subjected to compression load by outer		
composite during autofrettage process		

¹All material properties needed over the complete range of operating temperatures

Accomplishments: Boss-Reinforced Dome Section for 700 Bar Type IV Tank

ABAQUS study to investigate the possible reduction in helical windings by reinforcing the entire dome section with extended boss

• Previous Mirai study* for boss showed 5% reduction in helical winding with smaller diameter and longer flange, but ABAQUS/WCM simulations at ANL showed no reduction

Accomplishments: Comparison of Strains along Fiber Direction

FE simulations for 147-L tank, 391-mm ID (empty), 5-mm HPDE liner

Boss reinforcement reduces the thickness of CF composite helical layers by ~5.0 mm (or 13% of 37.1 mm in baseline boss configuration)

- 15% reduction in total weight of carbon fiber composite offset by 23.2 kg increase in weight of boss
- Slight reduction in the level of strain in the composite material in the dome section, but higher strain in the helical layers in the cylinder section

Accomplishments: Status of 700-bar cH₂ System

Updated system physical parameters, winding pattern, dome reinforcement

- Tank empty pressure: 1 (20 bar) or 2-stage (10-15 bar) pressure regulator and supply pressure effect, 1.1-2.1% saving in CF
- Ambient temperature: consistent with SAE regulations (15°C vs. 20°C), 1.1% saving in CF
- Tank design: conventional (Conv.) vs. alternate (Alt.) design similar to Mirai tank, 4.9% saving in CF
- Boss design: Boss-reinforced dome, 15% saving in CF, offset by heavier boss

	А	В	С	D	E	F	G
Empty pressure, bar	20 ⁽¹⁾	20	15 ⁽²⁾	10 ⁽³⁾	15	10	10
Ambient temperature, °C	20	15	15	15	15	15	15
Tank design	Conv.	Conv.	Conv.	Conv.	Alt. ⁽⁴⁾	Alt.	Alt.
Boss design	Conv.	Conv.	Conv.	Conv.	Conv.	Conv.	Reinf. ⁵
CF composite, kg	97	95.9	94.9	93.9	90.3	89.3	75.8
Gravimetric capacity, wt%	4.19	4.23	4.26	4.29	4.41	4.45	4.24
Volumetric capacity, g-H ₂ /L	24.38	24.64	24.88	25.13	25.23	25.48	25.17

(1) Quantum 1 or 2-stage pressure regulator

(2) Aerodyne Controls 2-stage pressure regulator

(3) JTEKT 2-stage pressure regulator in Toyota Mirai, empty pressure unknown

(4) Similar in design to the storage tank used in Toyota Mirai

(5) Boss-reinforced dome concept

A: 2015 DOE Hydrogen and Fuel Cells Program Record #15013 "Onboard Type IV Compressed Hydrogen Storage 12 System – Cost and Performance Status 2015"

Accomplishments: On-Board RT Sorbent Hydrogen Storage System

RK Ahluwalia, J-K Peng, TQ Hua, Sorbent Material Property Requirements for On-board Hydrogen Storage for Automotive Fuel Cell Systems, IJHE 40 (2015) 6373-6390

Accomplishments: Reference Sorbent Targets

Reaching system targets of 5.5 wt% gravimetric capacity and 40 g/L volumetric capacity requires a sorbent with 101 g-H₂/kg excess (112 g-H₂/kg absolute) uptake at 100 bar and 35°C, when layered with 5-wt% ENG and compacted to 513 kg/m³ bulk density

• ~90% H_2 desorbed with 95 bar pressure swing and 25°C temperature swing

Theoretical Absolute Uptake* at							
25°C, 100 b	25°C, 100 bar, g-H ₂ /kg						
MOF-5 6.0							
Ni₂(m-dobdc)	9.1						
UiO-66*	1.5						
UiO-66-Ca	24.2						
UiO-67*	3.0						
UiO-67-Ca	21.4						
UiO-67-Ca ₂	34.6						
UiO-68*	4.0						
UiO-68-Ca	19.5						
UiO-68-Ca ₂	31.1						
UiO-68-Ca ₄	47.5						

*Based on formula units, 4 H₂ adsorbed per Ca²⁺ cation, and listed uptake in UiO MOFs

*K. V. Kumar et al, Computational and Theoretical Chemistry, 1061 (2015) 36-45

Accomplishments: Optimum Storage Pressure

For $-\Delta H^0 = 13.2 \text{ kJ/mol} (-\Delta S^0 = 66.5 \text{ J/mol.K})$, sorbent uptake requirement slightly less stringent (smaller N_{ex}^{max}) at 150-175 bar storage pressure

- N_{ex}^{max} : Peak excess uptake occurs at a pressure (P_{max}) which is a function of ΔH^0 and temperature
- For given ΔH^0 , N_{ex}^{max} is a measure of the required adsorption site density

 N_{ex} : Required uptake at 298 K to meet system gravimetric capacity target

 N_{ex} varies in a narrow range over 75-250 bar storage pressures.

Along with ΔH^0 , N_{ex}^{max} may be regarded as a material property

- Material with higher N^{max}_{ex} likely more difficult to discover
- Preferable to select storage pressure that requires smallest N^{max}_{ex}

Accomplishments: Optimum Enthalpy of Adsorption

13.2 kJ/mol enthalpy of adsorption ($-\Delta H^0$) is about the optimum value for $-\Delta S^0 = 66.5$ J/mol.K, 100-5 bar pressure swing, 35-60°C temperature swing

- P_{max} too high for lower $-\Delta H^0$: e.g., 300 bar for $-\Delta H^0 = 10.3$ kJ/mol
- Usable adsorbed H₂ decreases for larger $-\Delta H^0$: 80% for $-\Delta H^0$ = 15.6 kJ/mol

Accomplishments: Summary and Next Steps

- Verify projected maximum room temperature capacities with LBNL ST133 leads
- Determine sorbent requirements to match performance of 700-bar system
- Investigate lower storage temperatures
- Translate sorbent requirements to required H₂ uptake in specific linkers and metal organic frameworks
- Model dual sites to represent H₂ uptake in linker and MOF

Summary Results							
UnitLow ΔS° Medium ΔS° High ΔS							
Entropy of Adsorption (- ΔS°)	J/mol.K	50	66.5	100			
Enthapy of Adsorption (- ΔH^{o})	kJ/mol	7.9	13.2	23.9			
Excess Uptake at 100 bar, 308 K	g-H ₂ /kg	97.2	101.2	114.1			
H ₂ Stored in Sorbent	%	91.1	91.0	90.7			
H ₂ Stored in Pores and Voids	%	8.9	9.0	9.3			
Bulk Density of Sorbent-ENG Compact	kg/m ³	532	513	465			
Refueling Heat Load	MJ/kg-H ₂	4.3	7.0	12.2			
Carbon Fiber Composite	kg	7.6	7.6	7.6			
Storage Temperature	К	308	308	308			
Discharge Temperature	К	333	333	333			
Storage Pressure	bar	100	100	100			
Minimum Delivery Pressure	bar	5	5	5			

Accomplishments: Hydrogen Carrier Pathways

Accomplishments: H₂ Carrier Study - Tools and Parameters

Financial Assumptions	ial Assumptions City H ₂ appual average daily use = 50 000 kg-H ₂ /day:					
i munetur Assumptions	On system a set of a star = $000/2$ intermed uses of veture (IDD) = $100/2$					
	Operating capa	city factor – 9	0%; Internal	1 rate of return (IKK) = 10%;		
	Depreciation (N	/ACRS)=15 y	rs; Plant life	=30 yrs; Construction period=3 yrs		
	NG	Electricity	Water	Toluene		
Feedstock and Utilities	6.00 \$/MBtu	5.74 ¢/kWh	0.54 ¢/gal	0.768 \$/kg		
H ₂ Production by SMR, /kg-H ₂	0.156 MBtu	0.569 kWh	3.35 gal			
Hydrogenation						
Ammonia	Haber-Bosch p	rocess and cr	yogenic air s	eparation unit; 350 tpd;		
Methanol	Steam reformin	g of CH ₄ /CO ₂	to synthesis	s gas (H ₂ -CO)/(CO+CO ₂)=2.05;		
	Conversion to methanol; methanol purification; 320 tpd;					
Toluene	99% conversion	n of toluene to	MCH over	non-PGM catalyst		
Dehydrogenation						
Ammonia	Catalytic decor	nposition of a	nmonia at h	igh temperatures;		
	H ₂ purification	by PSA at 20	atm (85% re	ecovery)		
Methanol	Catalytic steam	reforming, H ₂	purification	by PSA at 20 atm (85% recovery)		
МСН	90% conversion	n of MCH to t	oulene; 4.1%	6 make-up toluene		
	H ₂ purification	by PSA at 20	atm (90% re	ecovery)		
Transmission	HDSAM v 3.1,	Truck Liquid	Delivery			
	Ammonia	Methanol	MCH	GH ₂		
Payload (kg)	22,500	22,500	22,500	1,042		
Volume (m ³)	37	28	29	36		
H ₂ (kg)	3398	3465	1112	1042		
GH ₂ Terminal	HDSAM v 3.1, Compressed Gas H ₂ Terminal					

Rath, L. (2011). Cost and performance baseline for fossil energy plants: Coal to synthetic natural gas and ammonia. DOE/NETL-2010/1402. Tan, E. et al. (2015). Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons via indirect liquefaction. NREL/TP-5100-62402.

Campbell, C. (2014). Hydrogen storage and fuel processing strategies. PhD Thesis, Newcastle University

Accomplishments: Levelized H₂ Cost at City Gate (50,000 kg-H₂/d)

Hydrogen carrier options incur incremental costs of 0.84-1.43 \$/kg-H₂

- To be competitive with the baseline GH₂ scenario, cost of LHC production, decomposition and make-up and H₂ purification must be < 0.77-1.10 \$/kg-H₂
- LHC related costs as analyzed: 2.52 (ammonia), 1.95 (methanol), 2.15 (MCH) \$/kg-H₂

Accomplishments: Breakdown of Levelized H₂ Cost at City Gate

Sources of increases in levelized costs compared to GH₂ scenario

- Ammonia: 54% capital; comparable O&M and fuel; ~10% utilities
- Methanol: 54% capital; 41% O&M and fuel; small for utilities
- MCH: 43% capital; comparable O&M, fuel and utilities

For cost breakdown, fuel refers to natural gas (NG); utilities include electricity, water & make-up toluene²¹

Accomplishments: Energy Efficiency

Endothermic dehydrogenation step including PSA at city gate is the largest contributor to the increase in energy consumption

- Total energy includes fuel plus electrical energy, assuming 33% efficiency in generating electrical power
- 38-50% higher energy consumption for the hydrogen carriers

Accomplishments: Summary and Next Steps

- 1. Analyze scenarios that favor hydrogen carriers
 - Large production plants that yield economy of scale and deployment of more efficient, less expensive technologies
 - Long transmission distances unsuitable for pipeline transmission or truck delivery of gaseous or liquid hydrogen
 - Market entry and other scenarios in which the carriers are supplied by the existing plants or have mix use
- 2. Develop process models for toluene/MCH pathway
 - Higher pressure dehydrogenation to remove the H₂ compression step
 - Reduction of MCH losses by refrigeration or higher pressure operation
 - Calibrate model and results against data from SPERA Hydrogen System
- 3. Analyze alternate two-way liquid organic carriers including perhydro dibenzyltoluene (MSH/H18-MSH) proposed by Hydrogenious
- 4. Investigate carriers that are particularly suitable for renewable hydrogen production and energy storage
- 5. Conduct reverse engineering to determine desirable properties of hydrogen carriers

FY2018 Collaborations

Cryo-Compressed Hydrogen	LLNL, BMW: LH ₂ pumps, fatigue behavior of metal liners, supercritical hydrogen storage, vacuum insulation, model validation
Compressed Hydrogen Storage	PNNL Team: 700-bar tank performance (ST101) Ford: Alternate tank design concepts
Sorbents	LBNL: Binding multiple H2 molecules per metal cation (ST133)
Metal Hydrides	ORNL: reverse engineering of high-pressure metal hydrides, acceptability envelope
Off-Board Fuel Cycle Efficiency	ANL (H2A Group), ANL (HDSAM), H2IT Taskforce
Off-Board Cost	ANL (H2A Group), ANL (HDSAM), H2IT Taskforce
On-Board Cost	Strategic Analysis Inc (SA)

 Argonne develops the storage system configuration, determines performance, identifies and sizes components, and provides this information to SA for manufacturing cost studies

Propose Future Work

- 1. Cryo-compressed H₂ Storage
 - Publish a paper on CcH₂ storage for fuel cell electric buses
 - Work with DOE, LLNL, and PNNL to develop material property database and tools for certification
- 2. H₂ storage in room-temperature sorbents
 - Verify the projected maximum room temperature capacities with LBNL ST133 leads
 - Determine sorbent requirements to match performance of 700-bar system
 - Investigate lower storage temperatures
 - Translate the sorbent requirements to required H₂ uptake in specific linkers and metal organic frameworks
 - Model dual sites to represent H₂ uptake in linker and MOF
- 3. Compressed H₂ storage for medium and heavy duty fuel cell vehicles
 - Manufacturability of elongated boss
 - Validation of Type 3, 700-bar cH₂ storage analysis results
 - Document Type 3 vs Type 4 tanks at different storage pressures
- 4. Hydrogen carriers for delivery
 - Analyze scenarios that favor hydrogen carriers
 - Independent review and consultation with Hydrogen Interface Taskforce and delivery experts

Any proposed future work is subject to change based on funding levels.

Project Summary

Relevance:	Independent analysis to evaluate on-board and off-board performance of materials and systems
Approach:	Develop and validate physical, thermodynamic and kinetic models of processes in physical and material-based systems Address all aspects of on-board and off-board targets including capacities, rates and efficiencies
Progress:	Showed that compared to Type 4 700-bar cH_2 tanks, 500-bar CcH ₂ can achieve 70% higher gravimetric capacity, 80% higher volumetric capacity, and 70% saving in CF composite Established targets for room temperature sorbents: 106±8 g- H ₂ /kg excess uptake at 100 bar when compacted to 500±35 kg/m ³ bulk density Demonstrated a concept of reinforcing the dome section with a metal boss for >10% saving in CF composite for Type 4 tanks Determined the cost of producing/hydrogenating H ₂ carriers, transmitting to and dehydrogenating them at city gate, and storing H ₂ (\$5.43-\$6.02)
Collaborations:	Ford, HL, LANL, LLNL, Materia, ORNL, PNNL, SA
Proposed Future Work:	Material properties and tools for CcH_2 material certification Compare and validate H_2 uptake in room temperature sorbents Seek independent review of metal boss reinforced dome concept Analyze scenarios that favor hydrogen carriers

Reviewer Comments

Generally favorable reviews with the following comments/recommendations

- Explain the reason for conducting some analyses, e.g., the application of CcH₂ storage to fuel cell buses.
- Savings of 1.1 % carbon fiber is too small. Explore more revolutionary approaches to reducing the thickness of CF composite.
- Complete the analysis of high-pressure metal hydride storage tanks.
- Focus on forward-thinking ideas and critical issues with potential for major breakthrough
- FY18 work scope consistent with above recommendations
- Ve prepared a paper on CcH₂ storage for fuel cell buses that explains its unique potential in an emerging infrastructure that relies on liquid H₂ delivery
- Ve proposed and analyzed the concept of metal-boss reinforced dome section for reducing the number of helical windings by more than 25%
- \checkmark We completed the analysis of high-pressure, low-enthalpy metal hydrides for onboard H_2 storage. The paper is being prepared for submission
- Ve completed a reverse engineering analysis of room-temperature sorbents to complement material discovery efforts on binding multiple H₂ molecules per metal cation inserted in MOFs
- We initiated a new analysis of one-way and two-way carriers for hydrogen
 delivery to city gate

Technical Back-Up Slides

ABAQUS WCM and FE-SAFE Models

 Autofrettage process to induce residual compressive stress in liner and increase the fatigue life of the composite tank

Process and Material Options

- Autofrettage at ambient temperature
- Autofrettage (proof) pressure
- Aluminum liners
- Brown-Miller strain life curve for aluminum

$$\frac{\Delta\gamma}{2} + \frac{\Delta\varepsilon_N}{2} = 1.65 \frac{\sigma_f'}{E} (2N_f)^b + 1.75\varepsilon_f' (2N_f)^c$$

- σ'_{f} fatigue strength coefficient
- ε'_f fatigue ductility coefficient
- b, c fatigue exponents

Applicable Codes and Standards

SAE durability test cycles: 5500 for light duty
 vehicles

Strain life curve

Evaluation of Boss-Reinforced Dome Concept

Carbon Fiber Composite Windings*

- Baseline boss: 67.5 kg helical, 39.8 kg hoop, 107.3 kg total
- New boss: 49.5 kg helical, 41.6 kg hoop, 91.1 kg total

Aluminum Boss

- Baseline boss: 3.4 kg
- New boss: 26.6 kg

System Gravimetric and Volumetric Capacities

- Baseline boss: 1.31 kWh/kg gravimetric, 0.81 kWh/L volumetric
- New boss: 1.25 kWh/kg gravimetric, 0.81 kWh/L volumetric

150 Liner Boss Composite Savings in material cost with 125 the new boss configuration: 8.2-26.6 100 3.4 107.3 Total Weight, kg $\Delta(CF) = -$ \$282.5 91.1 $\Delta(Boss) = \$94.9$ 75 Δ (Liner) = \$0.07 50 $\Delta(\text{Total cost}) = -\187.6 25 $(-1.00 \ MWh)$ 0

Baseline

- 8.2

30

New Boss

Langmuir Isotherm Model

Optimum ΔH^0 for maximum usable H₂ depends on operating pressures

Optimum -ΔH°, kJ/mol

Based on formula units, 4 H_2 adsorbed per Ca²⁺ cation, and listed uptake in UiO MOFs

Linker Structure		Unit Formula	Absolute Uptake g-H₂/kg
MOF-5		Zn4O(CO2C6H4CO2)3	6.0
Ni₂(m- <u>dobdc</u>)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ni ₂ (CO ₂ C ₆ H ₂ O ₂ CO ₂)	9.1
UiO-66	`ax - <u>(_</u>)- cxo`	Zr ₆ O ₄ (OH) ₄ (CO ₂ C ₆ H ₄ CO ₂) ₆	1.5
UiO-66-Ca	·	Zr ₆ O ₄ (OH) ₄ (CO ₂ C ₆ H ₂ CaO ₂ CO ₂) ₆	24.2
UiO-67	`wx-{_}-{_}-(_)-(w`	Zr ₆ O ₄ (OH)4(CO ₂ (C ₆ H ₄) ₂ CO ₂) ₆	3.0
UiO-67-Ca	(Zr ₆ O ₄ (OH) ₄ (CO ₂ -(C ₆ H ₃) ₂ CaO ₂ -CO ₂) ₆	21.4
UiO-67-Ca₂	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Zr ₆ O ₄ (OH) ₄ (CO ₂ -(C ₆ H ₂) ₂ (CaO ₂) ₂ -CO ₂) ₆	34.6
UiO-68	·w{-}-{-}-{-}wi	Zr ₆ O ₄ (OH) ₄ (CO ₂ (C ₆ H ₄) ₃ CO ₂) ₆	4.0
UiO-68-Ca	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Zr ₆ O4(OH)4(CO2-C6H4-C6H2CaO2-C6H4-CO2)6	19.5
UiO-68-Ca₂	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Zr ₆ O ₄ (OH) ₄ (CO ₂ -C ₆ H ₃ -CaO ₂ -C ₆ H ₂ -CaO ₂ -C ₆ H ₃ -CO ₂) ₆	31.1
UiO-68-Ca₄	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Zr ₆ O₄(OH)₄(CO₂-C ₆ H₂-(CaO₂)₂-C ₆ -(CaO₂)₂-C ₆ H₂-CO₂) ₆	47.5

Room Temperature Sorbents

M. Head-Gordon and J. R. Long (ST133): Binding Multiple H₂ Molecules per Metal Cation

- E. Tsivion, S. P. Veccham and M. Head-Gordon, High Temperature Hydrogen Storage of Multiple Molecules: Theoretical Insights from Metalated Catechols, ChemPhysChem 2017, 18, 184-188.
- Ca-catecholate, Mg-catecholate and thio-catecholate in UiO-66 MOF

Sequential Adsorption Model

 Thermodynamic quantities for 2R, 1T DFT calculations for CatCa by Tsivion, Veccham and Gordon

H ₂	1	2	3	4
∆E, kJ/mol	-16.0	-15.7	-15.3	-15.0
Δ H, kJ/mol	-7.5	-7.2	-6.8	-6.4
Δ S, J/mol/K	-41.3	-38.8	-35.9	-33.0

- Approaching 100% coverage of metalated linkers in UiO-66 at 100 bar, room temperature
- ¹⁰⁰ 22.7 g-H₂/kg (2.25 wt%) projected increase in H₂ uptake if all the original linkers in the MOF are replaced by metalated linkers