

We put science to work.™

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Hydrogen Storage System Modeling: Public Access, Maintenance, and Enhancements

Presenter: David Tamburello

Team: Matthew Thornton, Sam Sprik, and Kriston Brooks

June 15, 2018 ST008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: October 1, 2015
- End: September 30, 2018
- 80% Complete (as of 5/1/18)
 - \$950,000 Spent (as of 5/1/18)

Barriers

- A. System Weight and Volume
- B. System Cost
- C. Efficiency
- E. Charging/Discharging Rates
- I. Dispensing Technology
- K. System Life-Cycle Assessment

Budget

- Total Project Funding: \$1,100,000
 - FY16 Funding: \$336,000
 - FY17 Funding: \$389,000
 - FY18 Funding: \$375,000

Partners

Collaborative effort to manage, update, and enhance hydrogen storage system models developed under the Hydrogen Storage Engineering Center of Excellence (HSECoE).

- Transfer engineering development knowledge from HSECoE on to future materials research.
- Manage the **HSECoE model dissemination** web page.
- Manage, update, and enhance the modeling framework and the specific storage system models developed by the HSECoE.
- Develop models that will accept direct materials property inputs and can be measured by materials researchers.
- <u>Ultimate Goal</u>: Provide modeling tools that will be used by researchers to evaluate the performance their new materials in engineered systems relative to the DOE Technical Targets.

Relevance – Barriers Addressed with Models

Barriers	Model Addressing Barrier
A. System Weight and Volume	System Estimator
B. System Cost	Tank Volume/Cost Model
C. Efficiency	Framework Model - On-Board Efficiency - Fuel Economy
E. Charging/Discharging Rates	Framework Model - Drive cycles
I. Dispensing Technology	Framework Model - Initial and Final System Conditions
K. System Life-Cycle Assessment	All Models

Relevance – Challenge to Materials Researchers: Evaluating Materials Relative to the DOE Technical Targets

Relevance – Original Framework Does Not Provide Entire

Solution

DOE Technical Targets

Gravimetric & Volumetric Capacity Durability & Operability Operating Temperature and Pressure On-Board Efficiency Charging/Discharging Rates Startup Refueling

Savannah River National Laboratory

Relevance – Focus: Improve Model Utilities for Materials

Savannah River National Laboratory ™ Operated by savannah river nuclear solutions

Approach – Modeling Tools Available / In Progress

Finite Element Models: Metal Hydride (MH) SRNL Tank Heat and Mass Transfer Models Adsorbent (AD) – HexCell **SRNL** • Adsorbent (AD) – MATI **SRNL** Completed Framework Model with: **UTRC/NREL Physical Storage** ٠ UTRC/SRNL/NREL Metal Hydride (MH) Estimate performance of light-duty **Chemical Hydrogen (CH)** PNNL/NREL vehicles with four drive cycles for each storage system SRNL/NREL Adsorbent (AD) • SRNL/NREL Compressed/Cryo-Compressed H₂ In Progress Stand-alone System Design Tool: Adsorbent (AD) SRNL Updated **Chemical Hydrogen (CH) PNNL** Updated Metal Hydride (MH) PNNL Completed Compressed/Cryo-Compressed H₂ **SRNL** In Progress Additional Tool / Models: **Evaluate Material Properties MH Acceptability Envelope** SRNL • Estimate tank material, design and cost Tank Volume/Cost Model PNNL **AD Isotherm Fitting Tool** SRNL **Completed**, working on Version 2 •

Accomplishments and Progress – Improved Website Access and

Support

HSECoE website: http://hsecoe.org/

Model Support and Feedback: <u>HSECoE@nrel.gov</u>

Hydrogen Storage Engineering CENTER OF EXCELLENCE	17	
Home Mission Partners Approach Technology Areas	Progress	Technical
Home		

The Hydrogen Storage Engineering Center of Encellence (HSECoE) is working to help reduce our Nation's dependence on flowing energy source by changing the way we power our case, house, and businesse. The HSECoE was selected through a competitive, merit reviewed solution process by DOE.

The Center addresses the significant engineering challenges associated with developing knownpressure, materiale-based, hydrogen storage systems for hydrogen faid call and internal combuttion engine light-daty whiches.

This project is incorporated into the DOE's Fuel Cell Technology Program, which consists of applied repearch and development

activities, conducted through Center of Excellence materials and engineering teams, and independent projects focusing on materials and concepts, tasting, and system analysis.

Improved model access/description Improved model access/description Improved Storage Engineering CENTER OF EXCELLENCE Home Mission Partners Approach Technology Areas Progress TechnicalGap Models Contact Models

What is the Metal Hydride Finite Elements (MHFE) Model?

Hydrogen Vehicle Simulation Framework

MHFE Model

.

AE Model

e Models Conte

A Base Case Study: Sodium Aluminum Hydride (MHFE-SAH)

Hydrogen Storage Tank Mass and Cost Estimation Model

What is the Metal Hydride Acceptability Envelope (AE)?

CH Storage System Design - Standalone

Adsorbent Storage System Design - Standalone

Downloads

Model Support and Feedback

Publications, Presentations and Model Verification

News

FJ

Home Mission Partners Approach Technology Areas Progress Technical Gap Models Contact

Hydrogen Storage Engineering Center of Excellence | © 2011. All Rights Reserved Powered by Scientific Computing | SRNL

Mission Partners Approach Technology Areas Progress Technical Gap Models Contact Bythogon Storge Registering Contro of Bacelloco (8 2011) AB Bigds Second Demondr V Science (2004)

H)

Savannah River National Laboratory

PERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Accomplishments and Progress – Stand-Alone Design Tools Estimate All Input Parameters Needed for the Framework

Design Tool Benefits:

- Availability (No Simulink license required)
- Uses inputs measured by materials researchers to calculate Framework parameters
- Estimates system mass and volume for preliminary comparison to the DOE Technical Targets
- Can be run separate or can be run as a GUI within the framework

Accomplishments and Progress – Chemical Hydrogen (CH) Stand-Alone System Design Tool

Additional capability this year

- Volume-based vs. Original useable H₂-based estimate
- Use calculated useable H₂ in Framework to estimate vehicle range

Accomplishments and Progress – Adsorbent (AD) Stand-Alone

System Design Tool

Updates and Additional Capability this year

- Extended system design options to room temperature and cold-gas temperature system design options
 - With original cryogenic temperature system operation
- UNILAN-based system design formulation (In Progress)
 - With original Dubinin-Astakhov (D-A) system design formulation
- Total H₂ storage system volume-based system design
 - With original useable H2-based system designs
- Use estimate system design parameters within the Framework
 to estimate vehicle performance

Accomplishments and Progress – Representative Results for ADS

Adsorbent Material	Gravimetric Capacity [g _{H2} /g _{sys}]	Volumetric Capacity [g _{H2} /L _{sys}]	Source
MOF-5 Powder [130 kg/m ³]	0.0338 g _{H2} /g _{sys}	$18.6 g_{H2}/L_{sys}$	SRNL / HSECOE
MOF-5 Compact [406 kg/m ³]	$0.0314 \text{ g}_{\text{H2}}/\text{g}_{\text{sys}}$	21.3 g_{H2}/L_{sys}	SRNL / HSECOE
MOF-5 Powder [200 kg/m ³]	0.0332 g _{H2} /g _{sys}	19.6 g _{H2} /L _{sys}	SRNL / HSECOE
UMCM-9 Powder* [200 kg/m ³]	0.0345 g _{H2} /g _{sys}	$20.5 \text{ g}_{\text{H2}}/\text{L}_{\text{sys}}$	Ford / U. of Michigan
MOF-177 Powder* [200 kg/m ³]	0.0340 g _{H2} /g _{sys}	$20.2 \text{ g}_{\text{H2}}/\text{L}_{\text{sys}}$	Ford / U. of Michigan
SNU-70 Powder* [200 kg/m ³]	$0.0341 \text{ g}_{\text{H2}}/\text{g}_{\text{sys}}$	$20.2 \text{ g}_{\text{H2}}/\text{L}_{\text{sys}}$	Ford / U. of Michigan
DUT-23 (Co) Powder* [200 kg/m ³]	0.0340 g _{H2} /g _{sys}	$20.2 \text{ g}_{\text{H2}}/\text{L}_{\text{sys}}$	Ford / U. of Michigan
IRMOF-20 Powder* [200 kg/m ³]	0.0336 g _{H2} /g _{sys}	19.9 g_{H2}/L_{sys}	Ford / U. of Michigan

*Special thanks to Ford and the University of Michigan for sharing their data.

System Design Assumptions:

- Operating Conditions: 80 K, 100 bar to 160 K, 5 bar
- 5.6 kg of usable hydrogen (~5.71 kg of actual hydrogen storage)
- Type 1 aluminum pressure vessel
- LN₂ pressure vessel chiller channel thickness of 9.525 mm
- \circ Uniform insulation thickness of 23 mm, with a 2 mm outer aluminum shell

Accomplishments and Progress – Metal Hydride (MH) Stand-

Alone System Design Tool

Predict the mass and volume of a MH-based H₂ storage system for light duty vehicles

- Developed in MATLAB and converted to an executable file.
- Microsoft Excel Input and Output
 - o Input parameters: H2 capacity, Cp, density, ΔH, Δ S, k
 - Results: System mass and volume, tank length and volume
- Design Tool Steps:
 - van't Hoff equation determines if fuel cell waste heat can be used (~85°C) or hydrogen combustor is required for > 5 atm equilibrium pressure requirement
 - MATLAB MHAE estimates cooling tube spacing required during refueling (5 minute refueling)
 - Calculate total mass and volume of tank interior (MT + tubes)
 - Tank Cost/Volume Model (estimates thickness and mass of tank)
 - Include mass and volume of BOP (with/without combustor)

Accomplishments and Progress – Input Information for MH Stand-

Alone System Design Tool

	Material Properties							
Name	Value	Units	Description					
hydcap	0.08	decimal fraction	Hydride Carrying capacity					
kbed	6	W/m-K	Thermal Conductivty of Hydride Bed					
rhobed	600	kg/m^3	Density of Hydride Bed					
dH	-30000	J/mol	Enthalpy per mole H2					
dS	-110	J/mol-K	Entropy					
dHcombust	241950	J/mol	Enthalpy of Combustion H2					
WH2	0.002	kg/mol	Molar Mass H2					
Rgas	8.314	J/mol-K	Universal Gas Constant					
		S	System Parameters					
Name	Value	Units	Description					
dmH2	5.6	kg	mass of hydride to add to tank					
d_tube	0.01	m	Coolant tube external radius					
th_tube	0.00089	m	Coolant tube thickness					
dT	45	К	Acceptable hydride temperature rise during refueling					
PH2hi	100	atm	Upper Hydrogen Operating Pressure					
PH2lo	5	atm	Lower Hydrogen Operating Pressure					
HemObl	1	option	Hemispherical endcap option					
Туре	1	option	Material Option 1 = 6061-T6 2 = 316 SS 3 = Composite Type III (AL liner) 4 = Composite Type IV (plastic liner)					
L/d	4	decimal fraction	Desired Ltank over dtank Enter Zero to Calculate					
Ltube	0	m	Desired tank length Enter 0 to calculate					
dtank	0	m	Desired tank inner diameter Enter 0 to Calculate					
dt	300	seconds	Target Refueling time (300 s = DOE 2020 target)					
Vessel	0	option	design only tank = 0, no insulation					
th_Ins	0	m	Insulation thickness					
eff	0.7	decimal fraction	Combustion Efficiency if required					

Savannah River National Laboratory

Accomplishments and Progress – Output Results for MH Stand-

Alone System Design Tool

Model Operator Interface

Results Excel Table

System mass (kg)	192
System volume (m3)	0.249
Combustor y=1/n=0	0
Mass H2 Burned (kg)	0
Tank Outer Diameter (m)	0.413
Tank Length (m)	1.96
Number of coolant Tubes	56
Total Hydride Mass (kg)	70
Percentage of DOE 2020 Gravimetric Target (%)	64
Percentage of DOE 2020 Volumetric Target (%)	75

System Diagram

Accomplishments and Progress – Integration of the Updated MH

Model into the Full Vehicle Framework

- Perform beta testing of the MH design tool, produce an executable file, and upload onto the HSECoE website with appropriate documentation
- Update MH storage system in framework to allow alternative material evaluation
 - Currently a generic model with 30 kJ/mol enthalpy and only fuel cell waste heat required for dehydrogenation

Figure 1: Vehicle simulation framework	9 D								
Hydrogen Vehicle Simulation Framework									
Select storage system	Select storage system MH-GH/3s v3 Framework diagram System diagram System diagram								
			12/4 EU				82 av		 •
Running scenario	- Storage system var	iables	- Single run	È.					
	Auxiliary loads	kW	(0.2 - 2)	0.7	Inert weight fraction	1020	(0 - 0.4)	0.1	
Test case	Combustor efficiency	-	(0.5 - 1)	0.9	Refueling fraction achieved	-	(0.5 - 1)	0.85	
1 Fuel economy test (UDDS+HWY,	Extra volume	L	(0 - 200)	0	Refueling pressure	bar	(60 - 110)	100	
	Hydr. crystal density	kg/m3	(500 - 7000)	851.415	Refueling temperature	с	(-20 - 50)	39.7	
Run simulation	Hydr. weight fraction		(0.01 - 0.2)	0.11					
Turi Simulaton	Hydride mass	kg	(1 - 400)	65					
	Hydride void fraction	-	(0.2 - 0.6)	0.3 We	ight fraction of pure hydride b	pefore ad	ding inert mat	erial	
	1								

Accomplishments and Progress – Vehicle Framework GUI

Accomplishments and Progress – Chemical Hydrogen Storage

Variables/Settings Stored in the Matlab files

Example filename: ch_ab_slurry_sys.mat

Stores Matlab structure variable, HS, with info needed to run in Vehicle Framework

ៅ Variables - HS	_		\times	📑 Va	riables -	- HS.DesignParams					-	-		×	<
P V V		0	⊙ ₹	PLC	DTS	VARIABLE	VIE	EW		1 7 6	6 1	¢ E	?	\odot	₹
HS 🗶 HS.Desi	gnParams 🗶			∏ H	s 🗙	HS.DesignParams	×								
1x1 struct with 12 fi	elds			🗄 1x1	1x14 struct with 3 fields										
Field 🔺	Value			Fields	abc	Name			Value	abc	Des	criptio	n		
🔤 Name	'CH-AB Slurry Exothermic'			1	'Reacto	or Length (m)'			0.4030	'Reactor L	ength (m)'				^
BlockChoice	'PNNL Exothermic AB Slurry'			2	'Ballast	t Tank Volume (m3)'	I		0.0141	'Ballast Ta	nk Volume	(m3)'			
DiagramFile	'ch_ab_and_alane_slurry_diagram	n.png		3	'Mass (Chemical Hydride (k	(g)'		77.5623	'Mass Che	emical Hydr	ide (kg	g)'		
Description	'CH RuninnutFile m'	arry system	m	4	'Fractio	on Chemical Hydride	e'		0.5000	'Fraction (Chemical Hy	ydride			
MatProps	1x27 struct			5	'Pressu	ure Set Point (bar)'			25	Pressure S	Set Point (b	ar)'			
🗄 OpCond	1x6 struct			6	'Liquid	Radiator Length (m)	ı)'		1.5347	'Liquid Ra	diator Leng	th (m)			
E ModelParams	1x2 struct			7	'Gas Ra	adiator Length (m)'			0.7088	'Gas Radia	tor Length	(m)'			-
E Sized	1x1 struct			8	'Impur	rity 1 Conc. (ppm)'			500	'Impurity	1 Conc. (pp	m)'			-
DesignParams	1x14 struct			9	'Impur	rity 2 Conc. (ppm)'			2000	'Impurity	2 Conc. (pp	m)'			-
E OutVars	1x3 struct			10	'Endot	hermic Flag (1=yes)'			0	'Endother	mic Flag (1=	=yes)'			-
				11	'Recup	erator Length (m)'			0	'Recupera	tor Length ((m)'			-
<			>	12	'TotalV	/olume'			0.1434	'Total Volu	ume (m^3)'				-
				13	'TotalN	/lass'			131.1720	'Total Mas	is (kg)'				-
				14	'flag'				0	'1=too ho	t, 2=reactor	too lo	ong'		-
				15											4
					<									>	

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Accomplishments and Progress – Adsorbent System

Design Tool in the Framework

Adsorbent System Design

Accomplishments and Progress – Metal Hydride Tool Integration

with the Vehicle Framework

Output file

Input file

	A	В	С	D
1			Metal Hydrid	e Storage Design Tool Input Sheet
2				Material Properties
з	Name	Value	Units	Description
4	hydcap	0.08	decimal fraction	Hydride Carrying capacity
5	kbed	6	W/m-K	Thermal Conductivty of Hydride Bed
6	rhobed	600	kg/m^3	Density of Hydride Bed
7	dH	-30000	J/mol	Enthalpy per mole H2
8	dS	-110	J/mol-K	Entropy
9	dHcombust	241950	J/mol	Enthalpy of Combustion H2
10	WH2	0.002	kg/mol	Molar Mass H2
11	Rgas	8.314	J/mol-K	Universal Gas Constant
12				System Parameters
13	Name	Value	Units	Description
14	dmH2	5.6	kg	mass of hydride to add to tank
15	r	0.01	m	Coolant tube external radius
16	th_tube	0.00089	m	Coolant tube thickness
17	dT	45	К	acceptable hydride temperature rise during refueling
18	PH2hi	100	atm	Upper Hydrogen Operating Pressure
19	PH2lo	5	atm	Lower Hydrogen Operating Pressure
20	HemObl	1	option	Hemispherical endcap option
				Material Option 1 = 6061-T6 2 = 316 SS 3 = Composite Type III (AL liner
21	Туре	1	option	4 = Composite Type IV (plastic liner)
22	L/d	4	decimal fraction	Desired Ltank over dtank Enter Zero to Calculate
23	Ltube	0	m	desired tank length Enter 0 to calculate
24	dtank	0	m	desired tank inner diameter Enter 0 to Calculate
25	dt	300	seconds	Target Refueling time (300 s = DOE 2020 target)
26	Vessel	0	option	design only tank = 0, no insulation
27	th_Ins	0	m	Insulation thickness
28	eff	0.7	decimal fraction	Combustion Efficiency if required
29				
30	Options that s	hould be s	pecified	
31	Options that c	an be left a	at the default values	

	А	В
1	System mass (kg)	192.6501
2	System volume (m3)	0.249515
3	Combustor y=1/n=0	0
4	Mass H2 Burned (kg)	0
5	Tank Outer Diameter (m)	0.413082
6	Tank Length (m)	1.963682
7	Number of coolant Tubes	56
8	Total Hydride Mass (kg)	70
9	Percentage of DOE 2020 Gravimetric Target (%)	64.5961
10	Percentage of DOE 2020 Volumetric Target (%)	74.81179

PERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Accomplishments and Progress – Model Website Analytics

(through April 2018)

Accomplishments and Progress – Model Website Analytics Web

Flow

25% of users go directly to modeling webpage

Largest fraction of subsequent interactions are to the modeling webpage

Website users are going to the model webpage

Savannah River National Laboratory

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Accomplishments and Progress – Model Website Analytics

	MODEL	DOWNLOADS (Since AMR17)
	H ₂ Storage Tank Mass and Cost Model	194 (44)
	MHAE Model	60 (14)
	MHFE Model	92 (18)
AND TO BE AN I B	Vehicle Simulator	138 (31)
	Framework Model	130 (31)
- Lesser &	CH System Design	10 (10)
	Standalone	10 (10)
	Adsorbent System Design	10 (10)
	Standalone	10 (10)
	MH System Design	Now
	Standalone	NEW
45		

44 new downloads of the H2 Storage Tank Mass and Cost Model since April, 2017.

Savannah River National Laboratory

Accomplishments and Progress – Survey on H₂ Storage Models

(December 2017)

- For each model: questions on usage frequency, value, issues
- Sent to email list compiled through hsecoe.org model downloads
 - o 229 unique recipients, 11 bounced, 24 responses
 - 4 outside responders willing to work/share material data with us

Q1: In what type of setting are you using the hydrogen storage model(s)?

Powered by 🏫 SurveyMonkey

Accomplishments and Progress – Survey Example Results for

Vehicle Framework

H2 Vehicle Simulation Framework

Q4: How would you rate the value of the model results?

Answered: 4 Skipped: 20

Powered by 🔿 SurveyMonkey

AMR Comments

2017 AMR Comment	2018 Response/Approach
The investigators should recognize other team members of the HSECoE that have contributed significantly to the development of these models. New model should be vetted with the HSECoE team members.	Acknowledgments will be added to the web site, presentations and papers. HSECoE team member have been engaged on new model development throughout the term of this project and that will continue as appropriate.
The team should consider including raw test data that have been collected by the HSECoE partners.	Without permission from HSECoE partners, we cannot post their raw test data. Assuming permission can be obtained, a section will be added to <u>www.hsecoe.org</u> where raw test data is made available.
It was not clear where and how different heat removal strategies could be explored within their models.	The current models are written to evaluate hydrogen storage materials. In the vehicle framework, the material's thermal conductivity and specific heat are used to evaluate heat removal strategies in coordination with the internal heat exchanger designs.
The lack of feedback from outside users is a project weakness	Evaluating materials from non-HSECoE members such as HyMARC and other, for example: Mike Veenstra, Ford Motor Co. Don Siegel, University of Michigan Jeff Long, UC Berkeley Have also conducted a user feedback survey this year.

Collaborations

Organization	Relationship	Туре	Responsibility
NREL	Team Member	Federal Lab	Update Website and Framework
SRNL	Team Member	Federal Lab	Adsorbent and Compressed Gas Modeling
PNNL	Team Member	Federal Lab	Chemical Hydrogen and Metal Hydride Modeling
Ford	Consultant	Industry	Beta Testing, Fuel Cell Model, Adsorption Data
RCB Hydrides LLC	Consultant	Industry	Beta Testing, H ₂ Storage Expertise
University of Michigan	Material Developer	Academia	Adsorption Data
University of California Berkeley	Material Developer	Academia	Adsorption Data
Purdue University	Material Developer	Academia	Chemical Hydrogen Storage Reaction Rate
HyMARC	Material Research	Federal Lab / Collaboration	Material development
Savannah I	River National Laboratory		We out science to work™

we put science to work.

Remaining Challenges and Barriers

- Increase the use of the models by material developers
 - Expand the capability of the models to include other kinetic and thermodynamic expressions
 - Simplify the model use for non-modelers
- Increase the use of the models by systems engineers
 - Potential expansion of the model capabilities to other vehicle classes
- Demonstrate the model's utility to other researchers
 - Applying the models to their applications
- Find available data to validate the model

Proposed Future Work – Recent Past and Proposed Future

Milestones/Deliverables

	Deliverable	Date
FY17 Q3	Update web models: Stand-Alone System Design Tools, Isotherm Fitting Tool, GUI/framework.	Complete
FY17 Q4	Develop MH and compressed gas storage system design tools	Complete
FY18 Q1	Provide update on web portal activity—web site hits and time on site, web site use locations and model down loads.	Complete
FY18 Q2	Update Adsorbent and CH models with any newly available data from DOE program and/or the hydrogen storage research community.	Complete
FY18 Q3	SMART Milestone – Alternative Storage System Formulations: Update the hydrogen storage equations for additional theoretical formulation(s). (i.e. Unilan or 2-state Langmuir)	In Progress
FY18 Q4	Update models with any newly available data from DOE program and or the hydrogen storage research community.	In Progress

Any proposed future work is subject to change based on funding levels

Proposed Future Work – Next Steps in Model Development

- Include a vehicle-side refueling model within the framework to address the forecourt requirements and their effect on refueling time and energy needs.
- Include dormancy calculations in all adsorbent design tools.
- Convert Stand-alone Design Tools from .exe to Excel VBA tools.
- Continue to develop volume-based design to target specific vehicle volume limitations/designs and/or, potentially, additional vehicle classes
- Expand model to other vehicle platforms (medium and heavy duty trucks, forklifts, buses, etc.)
- Work with Material Based H₂ Storage Developers to apply models to their materials
- Maintain and enhance existing framework models and track web activity and downloads

Any proposed future work is subject to change based on funding levels

Summary

Relevance	 Provide materials based hydrogen storage researchers with models and materials requirements to assess their material's performance in an automotive application.
Approach	 Improve framework utility by bridging the gap between the information generated by the materials researcher and the parameters required for the framework model.
Technical Accomplishments and Progress	 Developed system estimators for MH, CH, and Adsorbents. System estimator used with framework GUI and as stand-alone executable. Developed a stand-alone isotherm data fitting routine for D-A parameters. Performed Survey Improved website and model accessibility.
Collaborations	 Project team includes NREL, SRNL, and PNNL. Consultants from industry participate in team meetings and provide input. Material developers from academia provide new material properties.
Proposed Future Research	 Expand the use of models by demonstrating their utility with other storage materials, theoretical formulations, and vehicle class options.

HSECoE Models on the WEB Team:

Matthew Thornton David Tamburello Kriston Brooks Sam Sprik

With support from Bob Bowman and Mike Veenstra

Adsorption data provided by Ford, University of Michigan, and University of California Berkeley

tional Renewable

Energy Laboratory

Special thanks to the rest of the HSECoE team,

Jesse Adams, and Ned Stetson.

