Project ID: ST122

Hydrogen Adsorbents with High Volumetric Density: New Materials and System Projections

Alauddin Ahmed,¹ Yiyang Liu,² Justin Purewal,³ Saona Seth,² Anuska Shresth,²

Antek Wong-Foy,²Adam Matzger,² Mike Veenstra,³ and **Don Siegel**¹ (PI)

¹Mechanical Engineering Department and ²Department of Chemistry, University of Michigan

³Ford Motor Company

DOE Annual Merit Review, June 15, 2018, Washington, DC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and Budget

Project Start Date: Project End Date: August 1st, 2015 July 31st, 2018

Total Project Budget: \$1,040,000

Federal Share:

UM:	\$800,000		
Ford:	\$192,000		
Total:	\$992,000		
Cost Share:	\$48,000 (Ford)		
Total Funds S	~\$925,000		

*Estimated as of 3/31/18

Barriers

Barriers addressed

- Volumetric Density
- Gravimetric Density

Partners

Interactions/collaborations:

Ford Motor Company, Hydrogen Storage Engineering Center of Excellence (HSECoE)

Project lead:

D. Siegel, University of Michigan

Background

- A high-capacity, low-cost method for storing hydrogen remains one of the primary barriers to the widespread commercialization of fuel cell vehicles
- Storage via adsorption is a promising approach due to its fast kinetics, reversibility, and high gravimetric densities
- An unfortunate characteristic of adsorptive storage is that high gravimetric densities typically come at the expense of volumetric density (total basis)
- HSECoE developed a 100 bar MOF-5-based storage system that approached competitiveness with 700 bar compressed. Our work in the HSECoE identified additional MOFs that may out-perform MOF-5, potentially resulting in a low-pressure system that could *surpass* 700 bar

Project goal: Demonstrate best-in-class MOFs that achieve high volumetric and gravimetric H₂ densities *simultaneously*, while maintaining reversibility and fast kinetics

Relevance

Objective 1: Demonstrate MOFs with high volumetric *and* gravimetric hydrogen densities, exceeding those of MOF-5

- Prior studies typically focus on maximizing gravimetric density alone
- Synthetic efforts guided by high-throughput screening
- If successful, these compounds will set a new high-water mark for H₂ density in adsorbents at cryogenic conditions
- ✓ Computationally screened H₂ capacity of ~500,000 MOFs
 ✓ Identified and demonstrated several compounds that exceed the performance of MOF-5 benchmark

Objective 2: System-level projections

- Project performance of most promising compounds to the system level by parameterizing models developed by the HSECoE
- Clarify how materials properties impact system performance
- ✓ Completed projections for several MOFs
- \checkmark Quantified how materials improvements translate to the system

Approach

Notes:

- Unless otherwise stated, all volumetric hydrogen densities reported assume single-crystal MOF densities.
- Unless otherwise stated, all measurements and calculations are performed at T = 77 K.

Concept

Year 3 Milestones

Our approach links atomic scale computation, experimental synthesis & characterization, and system-level modeling

Year	Milestone or Go/No-Go	Due	Description	Status
3	Milestone	7/31/18	 Extend computational screening to temperature+pressure-swing conditions. Synthesize most promising compounds and measure hydrogen uptake experimentally. 	On Track . Majority of MOF database has been screened. Experimental testing of promising materials is continuing.
3	Milestone	7/31/18	 Extend system modeling projections to SNU-70, UMCM-9, and NU-100. Project pathway to meet DOE targets. Quantify how materials improvements translate to system-level improvements 	Complete.

1	Go/No-Go	7/31/16	Demonstrate at least 1 MOF with >90% projected SA, >3,000 m ² /g, and H ₂ capacity matching MOF-5 baseline	IRMOF-20 demonstrated
---	----------	---------	--	-----------------------

2	Go/No-Go	7/31/17	Demonstrate at least 1 MOF with hydrogen capacities exceeding baseline MOF-5 by 15%	SNU-70 and NU-100 demonstrated
---	----------	---------	---	-----------------------------------

High-throughput Screening

Prior work: developed a database of MOFs by mining the CSD. Chahine rule and crystal structure were used to predict H_2 capacity in thousands of compounds

J. Goldsmith, et al., Chem. Mater., **25**, 3373 (2013).

Grand Canonical Monte Carlo

- GCMC = atomistic method that calculates the total amount of H₂ (adsorbed + gas phase) contained within the pore space of a MOF at given T, P
- Does not rely on empirical correlations such as the Chahine-rule

Example GCMC simulation of CH_4 adsorption in Ni-DOBDC at 298 K and 35 bar

- Calculations employ the MGS* and the Pseudo-FH** unified atom models for H₂-MOF interactions
- MOF atoms are fixed

Force Field	Sigma (Å)	Epsilon/k _B (K)
MGS	2.958	36.7
Pseudo-FH	3.064	30.1

Examples of Simulated Isotherms

GCMC isotherms calculated with the pseudo-Feynman-Hibbs interatomic potential are in very good agreement with our measured isotherms

Total Gravimetric H₂ Uptake

Ford

Flowing supercritical CO₂ activation is milder than vacuum activation \rightarrow minimizes pore collapse and maximizes surface area

Batch activation: Nelson, A. P.; Farha, O. K.; Mulfort, K; Hupp, J. T. *J. Am. Chem. Soc.* **2009**, *131*, 458. Flow activation: Liu, B.; Wong-Foy, A. G.; Matzger, A. J. *Chem. Commun.* **2013**, *49*, 1419.

MOFs activated with flowing sc-CO₂ generally exhibit superior properties

Material	Surface area (flow Sc-CO ₂ activation)	Surface area (vacuum/batch Sc-CO ₂ activation)
UMCM-9	5357 m²/g	1330 m²/g (vac)
FJI	4813 m²/g	4043 m²/g (batch)
MOF-74 (Zn/DOBDC)	1108 m²/g	750-950 m ² /g (vac)
UMCM-10	4001 m²/g	Structure collapses under vacuum activation
UMCM-12	4849 m²/g	Structure collapses under vacuum activation
IRMOF-8 (non-interpenetrated)	4461 m²/g	Structure collapses under vacuum activation
A series of functionalized IRMOF-8 (non-interpenetrated)	~4000 m²/g	-
HKUST-1	1710-1770 m ² /g (heating required)	682-1944 m ² /g (vac)

Liu, B.; Wong-Foy, A. G.; Matzger, A. J. *Chem. Commun.* **2013**, *49*, 1419. Dutta, A.; Wong-Foy, A. G.; Matzger, A. J. *Chem. Sci.* **2014**, *5*, 3729. Feldblyum, J. I.; Wong-Foy, A. G.; Matzger, A. J. *Chem. Commun.* **2012**, *48*, 9838. Tran, L. D.; Feldblyum, J. I.; Wong-Foy, A. G.; Matzger, A. J. *Langmuir* **2015**, *31*, 2211.

Accomplishments and Progress

2nd Go/No-Go Milestone

Computationally identified, and experimentally demonstrated 3+ MOFs (IRMOF-20 SNU-70, and NU-100) that out-perform MOF-5 baseline

MOF Databases

Compiled a MOF database of ~500,000 compounds

- 43,000+ MOFs assessed by GCMC for temperature + pressure swing storage
- ~100,000 MOFs assessed by GCMC for pressure swing storage
- ~500,000 MOFS assessed by GCMC + machine learning for pressure swing storage

Source	Available in	Zero surface	H ₂ capacity	H ₂ capacity evaluated
Source	database	area	evaluated empirically	with GCMC
UM+CoRE+CSD17 (RM)	15,235	2,950	12,285	12,799
Mail-Order MOFs (MO)	112	4	108	112
In Silico MOFs (IS)	2,816	154	2,662	466
In Silico Surface MOFs (ISS)	8 <i>,</i> 885	283	8,602	1,058
MOF-74 Analogs (M74)	61	0	61	61
ТоВаССо (ТВ)	13,512	214	13,298	290
Zr-MOFs (ZR)	204	0	204	204
NW Hypothetical MOFs (NW)	137,000	30,160	106,840	12,374
UO Hypothetical MOFs (UO)	324,500	32,993	291,507	16,372
In-house MOF designs	18	0	18	5
Total	493,458	66,758	435,585	43,741

RM: (a) UM: J.Goldsmith, A. G. Wong-Foy, M. J. Cafarella, and D. J. Siegel, *Chem. Mater.*, 25, 3373–3382 (2013); (b) CoRE: Y. G. Chung, *et al.*, *Chem. Mater.*, 26, 6185–6192 (2014); (c) CSD17: P. Z. Moghadam et al., *Chem. Mater.*, 29, 2618–2625 (2017).

MO: R. L. Martin, L.-C. Lin, K. Jariwala, B. Smit, M. Haranczyk, J. Phys. Chem. C 117, 12159-12167 (2013);

IS: Y. Bao, R. L. Martin, M. Haranczyk, M. W. Deem, J. Phys. Chem. C 119, 186-195 (2015).

ISS: Y. Bao, R. L. Martin, C. M. Simon, M. Haranczyk, B. Smit, M. W. Deem, Phys. Chem. Chem. Phys., 17, 11962-11973 (2015).

M74: M. Witman, S. Ling, S. Anderson, L. Tong, K.C. Stylianou, B. Slater, B. Smit, M. Haranczyk, Chem. Sci., 7, 6263-6272 (2016).

TB: Y. J. Colón, D. A. Gómez-Gualdrón, and R. Q. Snurr, Cryst. Growth Des., 17, 5801–5810 (2017).

ZR: D. A. Gómez-Gualdrón, O.V. Gutov, V. Krungleviciute, B. Borah, J. E. Mondloch, J. T. Hupp, T. Yildirim, O.K. Farha, R.Q. Snurr, Chem. Mater. 26, 5632-5639 (2014).

NW: C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, Nat. Chem. 4, 83–89 (2012).

UO: M. Z. Aghaji, M. Fernandez, P. G. Boyd, T. D. Daff, and T. K. Woo, Eur. J. Inorg. Chem., 2016, 4505–4511 (2016).

High-Throughput Screening

Ford

Predicted usable H₂ capacities for PS and TPS conditions

Name	Source	Density (g/cm³)	Gravimetric Surface Area (m²/g)	Volumetric Surface Area (m²/cm³)	Void Fraction	Pore Volume (cm³/g)	Largest Cavity Diameter (Å)	Pore Limiting Diameter (Å)	UG at PS (wt.%)	UV at PS (g/L)	UG at TPS (wt.%)	UV at TPS (g/L)
hypotheticalMOF_5056615_i_1_j_29_k_2_m_2_cat_1	NW	0.56	4388	2474	0.79	1.41	7.9	9.6	4.4	28.6	8.6	53.7
ODIXEG	RM	0.55	4090	2259	0.84	1.42	10.4	7.5	4.9	31.2	8.8	53.7
hypotheticalMOF_5057692_i_1_j_29_k_19_m_2	NW	0.55	4546	2489	0.80	1.47	7.2	9.4	4.7	29.9	8.8	53.6
ENITAX	RM	0.57	4021	2304	0.83	1.36	10.1	7.2	4.7	31.0	8.5	53.5
TEQPEM	RM	0.57	3456	1980	0.86	1.45	17.2	9.2	5.2	34.0	8.5	53.5
RAYMIP	RM	0.50	4101	2062	0.90	1.61	13.5	9.8	5.0	29.4	9.6	53.3
hypotheticalMOF_5057684_i_1_j_29_k_19_m_2	NW	0.52	4776	2468	0.81	1.56	7.1	9.9	5.2	31.3	9.2	53.1
hypotheticalMOF_5058504_i_1_j_29_k_28_m_2_cat_1	NW	0.57	4164	2372	0.80	1.40	9.8	10.7	4.3	28.3	8.5	53.1
hypotheticalMOF_5031348_i_0_j_29_k_10_m_2	NW	0.58	3766	2169	0.82	1.42	7.3	10.8	4.8	31.8	8.4	53.0
hypotheticalMOF_5032270_i_0_j_29_k_20_m_2_cat_2	NW	0.52	4282	2234	0.81	1.55	10.8	12.8	4.9	29.6	9.1	53.0
hypotheticalMOF_5082354_i_2_j_29_k_19_m_5	NW	0.55	4088	2263	0.77	1.40	7.1	10.2	3.5	22.9	8.7	52.9
hypotheticalMOF_5033226_i_0_j_29_k_28_m_0_cat_2	NW	0.49	5106	2483	0.80	1.66	9.4	11.3	5.2	29.5	9.7	52.9
hypotheticalMOF_5033222_i_0_j_29_k_28_m_0_cat_2	NW	0.49	4876	2371	0.80	1.65	9.8	11.4	5.2	29.6	9.7	52.9
hypotheticalMOF_5056349_i_1_j_28_k_28_m_2_cat_1	NW	0.55	3949	2156	0.80	1.46	9.7	11.1	4.6	28.9	8.8	52.8
hypotheticalMOF_5055308_i_1_j_28_k_19_m_2_cat_1	NW	0.54	4173	2240	0.80	1.49	8.3	9.8	4.7	28.9	8.9	52.8
hypotheticalMOF_5058508_i_1_j_29_k_28_m_2_cat_1	NW	0.51	4269	2165	0.81	1.60	8.6	11.1	5.2	30.8	9.4	52.8
hypotheticalMOF_5081896_i_2_j_29_k_12_m_0_cat_2	NW	0.48	4953	2380	0.79	1.64	7.5	10.9	5.0	28.3	9.8	52.8
hypotheticalMOF_5083172_i_2_j_29_k_28_m_2_cat_1	NW	0.57	3905	2219	0.80	1.40	8.4	9.8	4.2	27.6	8.4	52.8
hypotheticalMOF_5027031_i_0_j_28_k_4_m_2	NW	0.61	4186	2560	0.80	1.31	7.2	9.4	4.4	30.3	7.9	52.8
hypotheticalMOF_5058646_i_1_j_29_k_29_m_1_cat_2	NW	0.56	4009	2239	0.78	1.40	7.3	10.9	4.2	27.1	8.6	52.7
MOF-5											7.8	51.9
MOF-5 + 5%											8.2	54.5

Examples of High Capacity MOFs

Examples drawn from screening of MOF databases with TPS conditions

MOFs Synthesized

ANUGIA (UMCM-152)

Linker synthesis

38%

Surface Area

Measured BET	= 3195-3225 m ² /g
Calculated	= 3762 m²/g
Literature	= 3480 m²/g

Usable capacities: P-swing between 5 bar 160 K and 100 bar at 77 K

GCMC calculated grav. = 8.3 wt.% GCMC calculated vol. = 52.3 g/L

19

Structure-Capacity Relationships Ford

Assuming TPS conditions

Usable Volumetric Capacity at Temperature+Pressure Swing from (T_{min} = 77 K, P_{max} = 100 bar) to (T_{max} = 160 K, P_{min} = 5 bar).

Mg-MOF with Open Metal Sites *Gord*

Explored an open metal site MOF with potential to bind multiple H₂

Activation of Mg-MOF

Unable to activate this MOF in a form having high surface area

Activation method 1

Solvent exchange: DMF-DCM activated at 110 °C for 48h BET SA: 1280-1350 m²g⁻¹

Activation method 2

Solvent exchange: DMF-acetone-hexane activated at 110 °C for 20h

BET SA: 1290-1320 m²g⁻¹

Activation method 3

Solvent exchange: DMF-acetone

SC CO₂ activation

material collapses

Complete removal of metal-coordinated solvent leads to material collapse; critical amount of solvent must be present in order to retain the framework integrity.

Mg-MOF heat of adsorption is ~1 kJ/mol higher than other MOFs examined

Isosteric Heat of Adsorption

Heat Exchanger:

Pressure Vessel:

Insulation Thickness:

LN2 Chiller Channel:

~0.2 g/cc

MOF Density:

HexCell

Type 1 Al

23 mm 3/8 inch

System Model

Type-1 Al tank with MOF and honeycomb HX

Tank.

105.05 kg

Component Mass

Component Volumes

57%

MOF.

162.97 L

36%

Materials-level H₂ storage capacities at 80 K and 160 K are estimated from the modified D-A isotherm model

Assumes powder MOF density of 0.2 g/cm³

Conversion of materials-level usable capacity (single crystal density) to system-level capacity at a realistic powder packing density

Material-level capacity at intrinsic crystal density

System capacity at powder packing density

*HSECoE MOF-5 HexCell Projection, ST008 2016 (ρ = 0.13 g/cm³) Assumes powder packing density of 0.2 g/cm³ for other MOFs System Gravimetric Capacity *Ford*

Improvements to materials-level gravimetric capacity has limited impact on system-level gravimetric capacity

*HSECoE MOF-5 HexCell Projection, ST008 2016 (ρ = 0.13 g/cm³) Assumes powder packing density of 0.2 g/cm³ for other MOFs

Diagram from Tamburello, David, et al. "Cryo-Adsorbent Hydrogen Storage Systems for Fuel Cell Vehicles." ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017.

Strategies for Increasing Capacity Gord

System-level volumetric capacity as a function of engineering modifications

📕 Increase 📕 Decrease 📕 Total

Collaborations

University of Michigan, Mechanical Engineering

Atomistic simulation and project management

University of Michigan, Dept. of Chemistry

Synthesis and characterization of targeted MOFs

Ford Motor Company (sub-contractor)

- PCT measurements
- Materials augmentation, characterization, scale-up, and system modeling

HSECoE/SRNL (unfunded collaborator)

Assistance with system models (David Tamburello)

Challenges and Barriers

- Many more compounds identified by computation than can be synthesized
 - Assessment by a human is needed before synthesis can proceed
 - This is a bottleneck
- Structure collapse or incomplete solvent removal during activation
 - "Can it be made?"
 - Failure to achieve expected surface area and porosity
 - Properties that control "synthesizability" are not well-understood
- Incorrect, incomplete, or disordered crystal structure data
 - Garbage in, garbage out
 - False positives in screening

- Project is nearly complete: July 31, 2018 end date
- Continue experimental efforts aimed at demonstrating MOFs that out-perform MOF-5 under temperature + pressure swing conditions
- Archive computational data for easy access by others
- Revise and submit publications

Summary

- **Goal**: demonstrate MOFs that achieve high volumetric *and* gravimetric H₂ densities simultaneously (at cryogenic conditions)
 - Establish new high-water mark for H₂ storage in adsorbents
- Approach: (Atoms to systems) High-throughput screening in combination with experimental synthesis, activation, characterization, and system-level projections

• Accomplishments:

- Identified and experimentally demonstrated several MOFs whose usable capacities exceed that of MOF-5
- Nearly 500,000 MOFs assessed computationally under PS and TPS conditions.
- This large database (linking properties and performance) will be a resource for the community in establishing design rules
- System level projections were provided for the highest-performing MOFs; these projections reveal how materials-level improvements translate to the system level

The Team

Technical Backup Slides

Several promising MOFs could not be synthesized with high surface area

SUKYON

Ma, L. et al., *Angew. Chem. Int. Ed.* **2009**, *48*, 9905.

BET S.A. = $2152 \text{ m}^2/\text{g}$ (fresh) [= $2081 \text{ m}^2/\text{g}$ (6 days under N₂)] Calculated = $4965 \text{ m}^2/\text{g}$ Literature = $1020 \text{ m}^2/\text{g}$

Chahine rule capacities: Total grav. = 11.2 wt. % Total vol. = 61 g/L

EPOTAF (SNU-21)

Kim, T. K. et al., *Chem. Commun.* **2011**, *4*7, 4258.

BET S.A. = $27 \text{ m}^2/\text{g}$ Calculated = $5208 \text{ m}^2/\text{g}$ Literature = $905 \text{ m}^2/\text{g}$

Chahine rule capacities: Total grav. = 11 wt. % Total vol. = 71 g/L

DIDDOK

Kondo, M. et al., *J. Organomet. Chem.* **2007**, 692, 136.

BET S.A. = $578 \text{ m}^2/\text{g}$ Calculated = $4652 \text{ m}^2/\text{g}$ Literature = not reported

Chahine rule capacities: Total grav. = 10.2 wt. % Total vol. = 60 g/L

MOFs Synthesized (2)

Several promising MOFs could not be synthesized with high surface area

OGEBAF (ZJU-32)

Cai, J. et al., Chem. Commun. 2014, 50, 1552.

Surface Area

Measured BET	= 3714 m²/g
Calculated	= 5163 m²/g
Literature	= 3831 m²/g

Usable capacities: P-swing between 5 and 100 bar at 77 K

GCMC calculated grav. = 6.9 wt.% GCMC calculated vol. = 33.3 g/L

BAZFUF (MOF-143)

Furukawa, H. et al., Inorg. Chem. 2011, 50, 9147.

Surface Area

Measured BET = 4829 m²/g (Unstable after activation; collapses over time) Calculated = 5470 m²/g Literature = not reported

Usable capacities: P-swing between 5 and 100 bar at 77K

MOFs Synthesized (3)

Several promising MOFs could not be synthesized with high surface area

Grünker, R. et al., *Eur. J. Inorg. Chem.* **2010**, 3835.

Surface Area

Measured BET	= 958 m²/g
Calculated	= 5152 m²/g
Literature	= 824 m²/g

Usable capacities:

GCMC calculated grav.	= 8.8 wt.%
GCMC calculated vol.	= 34.8 g/L

XAFFIV [DUT-10(Co)]

Grünker, R. et al., *Eur. J. Inorg. Chem.* **2010**, 3835.

Surface Area

Measured BET Calculated Literature = 456 m²/g = 5329 m²/g = not reported

Usable capacities:

GCMC calculated grav. = 8.5 wt.% GCMC calculated vol. = 36.6 g/L

EDUVOO (IRMOF-14)

Eddaoudi, M. et al., *Science* **2002**, *295*, 469.

Surface Area

Measured BET	= not phase pure
Calculated	= 4857 m²/g
Literature	= not reported

Usable capacities:

GCMC calculated grav.	= 8.0 wt.%
GCMC calculated vol.	= 35.5 g/L

MOFs Synthesized (4)

Several promising MOFs could not be synthesized with high surface area

ECOLEP

Li. et al., Cryst. Growth Des. 2011, 11, 2510.

Surface Area

Measured BET	= not phase pure
Calculated	= 4510 m²/g
Literature	= 202 m²/g

Usable capacities:

GCMC calculated grav. = 8.2 wt.% GCMC calculated vol. = 39 g/L

UKIBIB

Zhou et al., Dalton Trans. 2017, 46, 14270.

Surface Area

Measured BET	= 2700 m ² /g, not phase pure
Calculated	= 4232 m²/g
Literature	= 4825 m²/g

Usable capacities:

MOFs Synthesized (5)

MOF-177-NH2

Dutta, A. et al., Angew. Chem. Int. Ed. 2015, 54, 3983.

Surface Area

Measured BET Calculated Literature

= 4280 m²/g (fresh) = 4514 m²/g = 4631 m²/g

Usable capacities: P-swing between 5 and 100 bar at 77 K

Measured grav. = 6.4 wt.%GCMC calculated grav. = 6.4 wt.%Measured vol. = 32.6 g/LGCMC calculated vol. = 33.7 g/L

UMCM-1

Koh, K. et al., Angew. Chem. Int. Ed. 2008, 47, 677.

Surface Area

Measured BET	= 4122 m²/g
Calculated	= 4391 m²/g
Literature	= 4160 m²/g

Usable capacities: P-swing between 5 and 100 bar at 77K

Measured grav. = 6.8 wt.% GCMC calculated grav. = 7.6 wt.% Measured vol. = 32.6 g/L GCMC calculated vol. = 34.9 g/L

MOFs Synthesized (6)

Examples of high surface area MOFs with unsatisfactory volumetric capacity

ICAQIO [DUT-23(Co)]

Klein, N. et al., Chem. *Eur. J. Chem.* **2011**, *17*, 13007.

Surface Area

Measured BET	= 4044 m ² /g (fresh)
Calculated	= 4714 m²/g
Literature	= 4850 m²/g

Usable capacities: P-swing between 5 and 100 bar at 77 K

Measured grav. = 6.2 wt.%GCMC calculated grav. = 6.7 wt.%Measured vol. = 30.2 g/LGCMC calculated vol. = 31.9 g/L

ICAQOU [DUT-23(Cu)]

Klein, N. et al., Chem. *Eur. J.*. *Chem.* **2011**, *1*7, 13007.

Surface Area

Measured BET	= 4
Calculated	= 4
Literature	= 4

= 4601 m²/g (fresh) = 4664 m²/g = 4730 m²/g

Usable capacities: P-swing between 5 and 100 bar at 77 K

Measured grav. = 6.7 wt.%GCMC calculated grav. = 6.6 wt.%Measured vol. = 32.4 g/LGCMC calculated vol. = 31.7 g/L

Can potentially be achieved by use of bridging 4,4'-bipyridine between Cu centers

BAZFUF

scCO₂ activated material collapses over time: SA decreases even after storage under N₂ atmosphere

Stable after scCO₂ activation

Strengthening the Structure of BAZFUF *Gord*

Q: Can we increase the structural rigidity of the BAZFUF framework, while preserving its volumetric capacity?

MOFs Synthesized (7)

Several promising MOFs could not be synthesized with high surface area

ZELROZ

Surface Area

Measured BET	= 3500 m ² /g
Calculated	= 4998 m²/g
Literature	= 2631 m²/g

ZELROZ (OAc Variant)

Surface Area

Measured BET	= 3600 m²/g
Calculated	= 5122 m²/g
Literature	≈ 3200 m²/g

Linker synthesis

Rankine, D. et al., *Chem. Commun.* **2012**, *48*, 10328.

Usable capacities: P-swing between 5-100 bar at 77 K

GCMC calculated grav.	= 8.7 wt.%
GCMC calculated vol.	= 36.8 g/L

Usable capacities: P-swing between 5-100 bar at 77 K

 $\begin{array}{rcl} \text{GCMC calculated grav.} &= 6.3 \text{ wt.\%} \\ \text{GCMC calculated vol.} &= 32.3 \text{ g/L} \\ \end{array}$

MOFs Synthesized (8)

Example of **real MOF** having high usable volumetric capacity

GAGZEV (NU-100)

Surface Area

Measured BET Calculated Literature = 5800-6300 m²/g = 5777 m²/g = 6143 m²/g

Linker synthesis

Usable capacities: P-swing between 5 and 100 bar at 77 K

• 7 steps in the original synthesis

can be made in 3 steps by modified method

Measured gravimetric = 10.1 wt.% (GCMC calc. = 10.8 wt.%) Measured volumetric = 35.5 g/L (GCMC calc. = 37.0 g/L)

Yuan, D. et al., *Angew. Chem. Int. Ed.* **2010**, *4*9, 5357. Farha, O. K. et. al., *Nat. Chem.* **2010**, *2*, 944.

Examples of hypothetical MOFs having high calculated volumetric capacities

SNU-70: Better than IRMOF-20

Example of hypothetical MOF having high volumetric capacity

Usable capacities: P-swing between 5 and 100 bar at 77 K

Measured gravimetric	= 7.3 wt.%
GCMC calculated grav.	= 8.0 wt.%
Measured volumetric	= 34.3 g/L
GCMC calculated vol.	= 36.8 g/L

Suh et. al. Chem. Eur. J. 2012, 18, 8673.

Designed MOFs based on crystallographic properties

Name	Linker	Usable Capacity at 77 K (between 5 and 100 bar)		Void Fraction	Gravimetric Surface Area	Volumetric Surface Area	Density (g/cm ³)	Pore Volume
		UV [g/L]	UG [wt%]		(m²/g)	(m ² /cm ³)	(0, -)	(cm³/g)
IRMOF-8- noninterpenet rated	HO ₂ C-CO ₂ H	35.3	6.8	0.83	4379	1964	0.45	1.86
IRMOF-10- noninterpenet rated	HO ₂ C-CO ₂ H	37.6	9.6	0.87	4999	1641	0.33	2.65
UMCM-8	HO_2C $ CO_2H$ HO_2C $ CO_2H$	33.4	5.7	0.82	4098	2096	0.51	1.61
UMCM-9	HO_2C CO_2H HO_2C CO_2H	36.2	8.3	0.86	4847	1805	0.37	2.31
MOF-5	HO ₂ C-CO ₂ H	31.1	4.5	0.78	3563	2172	0.60	1.36

MOFs Synthesized (10)

UMCM-9: better than IRMOF-20 and similar as SNU-70

UMCM-9

Surface Area

Measured BET Calculated Literature = 5000-5250 m²/g = 4847 m²/g = 4930-5030 m²/g

Usable capacities: P-swing between 5 and 100 bar at 77 K

Measured gravimetric = 7.8 wt.% (GCMC calc. = 8.3 wt.%) Measured volumetric = 34.1 g/L (GCMC calc. = 36.2 g/L)

Capacity Definitions

$$C_{tot} = C_{exc} + \frac{100 \times d_g V_{pore}}{1 + d_g V_{pore}}$$

$$V_{pore} = \frac{d_{sk} - d_{bulk}}{d_{sk} d_{bulk}}$$

Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials, V3.34, p.223

 C_{tot} = total adsorption capacity in wt.% C_{exc} = excess adsorption in wt.% V_{pore} = specific pore volume

d_g = density of H₂ gas at T,P d_{sk} = skeletal density d_{bulk} = bulk density

"Material" Hydrogen Capacity Definitions

Performed air-free synthesis¹ of the benchmark compound MOF-5

- Measured performance of in-house MOF-5
 - H₂ uptake & BET surface area essentially identical to BASF-supplied MOF-5 (HSECoE)
- Usable capacity (pressure swing to 5 bar) adopted as benchmark

Total **Usable** (P-swing) Volumetric Gravimetric Volumetric Gravimetric р (g/L) (wt.%) (g/L) (wt.%) (bar) 5 22.2 3.5 22.2 3.3 35 44.46.8 47.8 25.6 3.8 50 7.3 53.3 31.1 100 4.5 8.0

T = 77 K

Synthesis of IRMOF-20 was attempted after computation identified it as a promising compound

Rowsell, J. L. C.; Yaghi, O.M. J. Am. Chem. Soc. 2006, 128, 1304.

- 1)
- 2)

 $4073 \text{ m}^2/\text{g}$ (94% of calc'd) BET S.A. = $4324 \text{ m}^2/\text{g}$ Calculated = $3409 \text{ m}^2/\text{g}$ Literature =

MOFs Identified by Prior Screening

Several MOF "Targets of Opportunity" were identified

- Combine high gravimetric and volumetric densities
- Overlooked: no/limited experimental evaluation
- Can these be synthesized in a robust form?

	EPOTAF (SNU-21)	DIDDOK	LURGEL (TO-MOF)	ENITAX (IMP-9)
Total Grav. (wt. %)	11	10.2	9.7	9.3
Total Volumetric (g/L)	71	60	57	59
Crystal Density (g/cm ³)	0.58	0.53	0.53	0.57
Calc'd/Meas. SA (m²/g)	5208/700-900	4651	4386/680	4162
Notes	Best combination of grav. & vol. density. H ₂ uptake measured previously: 5 wt %	No measurements	CO ₂ uptake measured.	No measurements

"Quick and dirty" Chahine-rule predictions of H₂ uptake in MOFs correlate strongly with GCMC calculations

Although GCMC is more expensive, it provides access to full isotherm and allows estimation of usable capacities

MOF Dashboard

We have developed a database to track promising compounds and share data

Idealized capacity (at the crystal density) does not translate 100% to an actual capacity for a MOF when compacted to high density.

Compaction Properties of MOFs

Compaction Properties of MOFs

System Assumptions:

23 mm MLVI insulation 3/8 inch LN₂ channels 80 K fill temperature

23 mm MLVI insulation3/8 inch LN2 channels80 K initial temperature

Translation of *material-level* volumetric capacity to systemlevel volumetric capacity.

(The material volumetric capacity at 160 K, 5.5 bar is assumed to be constant at 1.5 g/L).

System Properties	
Initial/Full Pressure:	100 bar
Initial/Full Temp:	77 K
Final/Empty Pressure:	5.5 bar
Final/Empty Temp:	160 K
Useable Hydrogen:	5.6 kg
Heat Exchanger:	HexCell
MOF Density:	0.4 g/cc*
Pressure Vessel:	Type 1 SS
Insulation Thickness:	10 mm
LN2 Chiller Channel:	1/4 inch

* For this estimate, the system volumetric capacity depends on the materiallevel capacity and is independent of the MOF density

Material-Level Volumetric Capacity of Densified MOF

Temperature+Pressure Swing (TPS) usable capacity is an alternative figure of merit. The sorbent can be heated up to release more H_2 .

Hydorgen storage capacity of MOF-5 at crystal density ($\rho = 0.605$ g/cm³)

Usable H₂ Storage Capacity (MOFs at crystal density) *Tord*

Volumetric H₂ storage capacity of MOFs at their single crystal density

The TPS capacity depends primarily on the capacity at 80 K / 100 bar.

Experimental Screening of MOFs

Summary of H₂ storage materials evaluated during project

Correlation between BET surface area (m^2/g) and gravimetric H_2 adsorption at 35 bar, 77 K