Development of Magnesium Boride Etherates as Hydrogen Storage Materials

Dr. G. Severa (PI) and Prof. C. M. Jensen (Co-PI)

University of Hawaii at Manoa

DOE Hydrogen and Fuel Cells Program Annual Merit Review

June 13-15, 2018

Project ID # ST138

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 10/01/2016
- Project End Date: 02/28/2020
- Percent Completion: 35 %

Barriers

Barrier	Project Goals
Low System Gravimetric capacity	$> 7 \text{ wt\% H}_2 \text{ system}$
Low System volumetric capacity	> 40 g/L system
Low System fill times	1.5 kg hydrogen/min

Budget

- Total Project Budget: \$1,204,366
 - Total Recipient Share : \$ 214,436
 - Total Federal Share : \$989,930
 - Total DOE Funds Spent: \$ 239,102.42
 as of 3/31/18

Partners

- HyMARC Consortium
 - SNL: High Pressure Hydrogenation
 - SNL: Material Characterizations
 - LLBL & LLNL: Theoretical Modelling
 - > NREL: Material Characterizations

Relevance

Objective: Synthesize and Characterize Modified Magnesium Boride Hydrogen Storage Materials Capable of Meeting DOE 2020 Targets.

Storage Parameter	Units	2020 Target	Ultimate Target
Low System Gravimetric capacity	kg H ₂ /kg system	0.045	0.065
Low System volumetric capacity	kg H ₂ /L system	0.030	0.050
Low System fill times (5.6 kg)	min	3-5	3-5
Min Delivery Pressure	bar	5	5
Operational cycle (1/4 tank to full)	cycles	1500	1500

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan: https://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22

Relevance: Recent Advances in Mg(BH₄)₂ Research

• Recent improvements in magnesium borohydride research.

	Hydrogenation		Dehydrogenation		Cycling wt%		
Dehydrogenation Product	Temp °C	P atm	time h	Temp °C	time h	Theory	Exp
MgB_2 (HP)	>400	>900	108	530	20	14.8	11.4
MgB ₂ (reactive ball milling/HT-HP)	/400	10/400	10/24	390	-	14.8	4
$Mg_{0.75}Mn_{0.25}B_2$	380	150	38	225-400	-	>11	1
$Mg(B_3H_8)_2(THF)_x/2MgH_2$	200	50	2	180	12	<2.5	
$Mg(B_3H_8)_2/2MgH_2$	250	120	48	250	120	2.7	2.1
$Mg(B_{10}H_{10})_2(THF)_x/4MgH_2/X$	200	50	2	200	12	4.9	3.8

 $Mg(BH_4)_2$ ammoniates

➢ Improved kinetics on dehydrogenation even though, NH₃, very stable BN products formed.

$Mg(BH_4)_2$ and Mg borane etherates

- Improved H₂ cycling kinetics on ether coordination, lower H₂ capacity.
- Strong coordination of ethers to magnesium at high temp.

Current state-of-the-art:

- > Better H_2 cycling kinetics (lower pressures and temperatures).
- $\blacktriangleright \quad \text{Lower gravimetric } H_2 \text{ storage capacity.}$

Efforts show plausibility of greatly enhancing kinetics of Mg borohydride materials.

M. Chong, M. Matsuo, S. Orimo, C.M. Jensen Iinorg. Chem. **2015**, *54*, 4120.; G. Severa, E. Rönnebro, C.M.Jensen; *Chem. Commun.* **2010**, *46*, 421. Grigorii Soloveichik, Jae-Hyuk Her, Peter W. Stephens, Yan Gao, Job Rijssenbeek, Matt Andrus, and J.-C. Zhao, Inorg. Chem. **2008**, 47, 4290-4298 J. J. Vajo, J Graetz, V Stavila, L Klebanoff, E Majzoub, FY **2015** DOE Annual Progress Report

Relevance: Potential for Practical Hydrogen Storage Properties

<u>HYPOTHESIS</u>: Ether coordination or incorporation can perturb the MgB_2 structure resulting in a destabilized MgB_2 material with improved hydrogen storage properties.

Ether modified $MgB_2 + 4H_2 \longrightarrow$

 \longrightarrow Mg(BH₄)₂

Mols	s ether/ Mol MgB ₂	(x) 0.70	0.40	0.20	0.10	0.05	
Wt %	Hydrogen						Minimize
	$MgB_2(OMe_2)_x$	9.4	11.1	12.8	13.8	14.3	ether:MgB ₂
	MgB ₂ (THF) _x	7.7	9.7	11.8	13.2	14.0	ratio
	$MgB_2(OCH_2Me_2)$	_x 7.6	9.6	11.7	13.1	14.0	IDEALLY:
	MgB ₂ (Dioxane) _x	7.0	9.0	11.3	12.8	13.8	Sub-Stoichiometric
	MgB ₂ (polyether) _x		1		>12	>12	amounts of ether

Hypothesis Validation

- Lower bulk MgB₂ hydrogenation temperature: From 400 to 300 °C
- Lower bulk MgB_2 hydrogenation pressure: From >900 to 700 bar.
- Increase MgB₂ hydrogen sorption rates.

Potential to improve practical hydrogen storage properties of MgB₂/Mg(BH₄)₂ system.

PROOF

of CONCEPT

Approach: Synthesize, Characterize and Hydrogenate Modified MgB₂ Materials

Experimental Approach: YEAR 1

A. Synthesis of MgB₂ etherates by reactive ball milling and heat treatments from:

Direct reaction of MgB_2 with ethers in presence/absents of other additives.

B. Hydrogenation reactions:

<u>UH</u>: \leq 150 bars, \leq 300 °C. <u>HyMARC-SNL</u>: \leq 1000 bars, \leq 400 °C.

C. Characterizations: FTIR, TGA-DSC, XRD, NMR, TPD.

Go/No-Go Decision : Demonstrate \geq 7.0 wt % hydrogen uptake by a MgB₂ etherate at \leq 300 °C, 700 bars 48 hrs and reversible release of \geq 2 wt% H₂ by at least one MgB₂ etherate: **MET**

Milestone #	YEAR 2: Project Milestones: (03/01/2018 - 02/28/2019)	Quarter	Accomplished (03/31/2018)
1	Characterize modified MgB_2 by FTIR, NMR, XRD & TGA-DSC.	1	25%
2	Characterize MgB ₂ composite by FTIR, NMR, XRD & TGA-DSC.	2	10%
3	Complete design and fabrication of medium pressure reactor.	2	10%
4	Perform 1 round of hydrogenation per quarter: \leq 700 bar, \leq 300 °C.	3	0%
5	Establish if kinetics of dehydriding of modified Mg boranes are limited by B- H or B-B bond formation or nano-structural effects.	4	0%
6	Demonstrate 5 cycles of reversible hydrogenation of modified MgB_2 -THF materials to $Mg(BH_4)_2$ at 300 °C and 700 bar.	4	0%
GNG	Demonstrate reversible hydrogenation of ≥ 8.0 wt % at ≤ 400 bar and ≤ 300 °C, and 50% cycling stability through three cycles of an optimal formulation of a modified MgB ₂ to Mg(BH ₄) ₂	4	

Any proposed future work is subject to change based on funding levels

Approach: Ab *Initio* Molecular Dynamic Simulations

Direct simulation of solute-solvent interactions, investigation of formation and/or dissociation of chemical bonds, charge transfer

Ab *initio* Molecular Dynamic Simulations to identify perturbation of MgB₂ by coordinating species.

HyMARC:LLNL Dr. B. Wood and Dr. S. Kang

storage

Any proposed future work is subject to change based on funding levels

Accomplishments: Molecular Dynamic Simulations

Orientation-dependent reactivity of MgB₂ with THF

→ Origin of structure deformation?/

Accomplishments: Molecular Dynamic Simulations

MgB₂ basal plane structure evolution in presence of THF

MD Simulations validate hypothesis and support experimental findings.

Accomplishments: MgB₂-Ether Hydrogenation Studies

FIRST TIME hydrogenation of MgB₂ to Mg(BH₄)₂ at 700 bars!

Accomplishments: MgB₂-THF-X Hydrogenation Studies

First time hydrogenation of bulk MgB₂ to Mg(BH₄)₂ at 300 °C! and 700 bars!

<u>700 bar</u> MgB_2 -X-THF + H_2 Magnesium borohydride 300 °C TGA mass loss (%) up to <600 °C Potential of cooperative effects: THF-X additive for samples H₂ treated at combination enhanced H₂ uptake of MgB₂ system. 300 °C, 700 bars & 72 hours Sample mass loss ¹¹B Solution NMR in (%) D₂O/THF MgB₂-pure 0 MgB₂-X1-THF BM MgB₂-X1-THF 2.5 MgB₂-X2-THF 1.7 $Mg(BH_4)$, MgB₂-X3-THF 6.3-7.2 MgB₂-X2-THF BM 101 100 TGA: MgB₂-X3-THF runs 99 Mass Loss (%wt) 98 97 96 MgB₂-X3-THF BM 95 94 93 92 91 30 -20 -30 -40 -50 -60 -70 -80 -90 20 10 0 -10 0 100 200 300 400 500 600 700 fl (ppm) 5°C/min, Ar flow Temperature (°C)

Vastly improved kinetics of hydrogenation of bulk MgB₂ at 300 °C! and 700 bars!

40

Accomplishments: MgB₂-X Hydrogenation Studies

First time hydrogenation of MgB₂ to Mg(BH₄)₂ at 300 °C! and 700 bars! in absence of ether!

 $MgB_2-X + H_2 \xrightarrow{700 \text{ bar}} Magnesium \text{ borohydride}$

Potential new pathways for improving kinetics of MgB₂ hydrogenation.

Accomplishments: IR Analyses of Hydrogenated Samples

FT-ATR analyses of hydrogenated MgB₂-X3-THF and MgB₂-X2 samples

Pre hydrogenated samples: (A) MgB₂+X3-THF and (B) MgB₂-X2;

Post hydrogenated samples (700 bar, 300 °C): (C) MgB₂-X3-THF and (D) MgB₂-X2.

Typical Mg(BH₄)₂ vibrations in the 2200-2300 cm⁻¹ and 1200-1300 cm⁻¹ region are observed after hydrogenation.

Accomplishments: TPD Analyses of Evolved Gases

NREL Data: Phase 1 GNG Data Validation.

Analyses of gases evolved on heat treatment of MgB₂-X3-THF and MgB₂-X1

Mostly hydrogen evolved from the hydrogenated MgB₂ based materials.

Accomplishments: Responses to Previous Year Reviewers' Comments

- Explore how catalysts/other additives affect the H₂ sorption kinetics in the MgB₂ether system, consider adding that to the future work plan.
 - Exploring MgB₂-THF-X system.
 - Targeting to make composite MgB₂ materials that can be hydrogenated at much lower pressures and temperatures.

• Feedback-driven syntheses.

• Results from hydrogenation and computational experiments are being utilized to optimize syntheses of improved modified MgB₂ materials.

• More interaction with HyMARC modeling team.

- Enhanced collaboration with Dr. Wood's group with feed back loops between computation and experiments.
- Ab initio MD simulation integrated into experimental tasks in SOPO.
- Monthly meetings with HyMARC modelling team.

Current and Future Work Addresses AMR Reviewer Comments.

Any proposed future work is subject to change based on funding levels

Remaining Challenges and Barriers

- Lowering of hydrogenation pressure to 400 bar at 300 °C whilst improving hydrogen uptake to ≥ 8 wt%.
- Hydrogen cycling of the modified MgB₂ materials.
- Understanding mechanism of hydrogenation enhancement in defected or composite magnesium borides.

Technology Transfer Activities: Provisional patent filed by University of Hawaii on the modified MgB₂ materials.

Collaboration

Partners	Project Roles
Sandia National Laboratories (HyMARC)	 Collaborating with Dr. Stavila and Dr. Allendorf: > High pressure hydrogenation experiments. > Characterization of samples by XRD and TGA-DSC.
Lawrence Livermore National Laboratory (HyMARC)	 Collaborating with Dr. Wood and Dr. Kang: Molecular dynamic simulations of magnesium boride etherates.
Lawrence Berkeley National Laboratory (HyMARC)	 Collaborating with Dr. Prendergast's Group: ➢ Reactive quantum molecular dynamics simulations of MgB_xH_y in etherate liquids.
National Renewable Energy Laboratory (HySCORE)	 Collaborating with Dr. Gennett: Temperature programmed desorption. Mass spec analyses of desorbed gas.

Proposed Future Work

UH Synthesis

- Synthesis of modified magnesium boride materials.
- Optimize MgB₂-X-THF system

Hydrogenations

• SNL: Demonstrate higher gravimetric cycling capacity at lower hydrogenation pressures.

- One round hydrogenation of modified MgB₂ materials per quarter at \leq 700 bar & \leq 300 °C.
- Hydrogen Cycling Studies.
 - THF modified MgB₂ material from Year 1
 - Multiple Cycling Studies of modified MgB₂ materials
- **UH:** Moderate pressure hydrogenation.
 - Set up \leq 350 bar, \leq 350 °C sys.
 - Screening modified MgB₂ at \leq 350 bar and \leq 350 °C.

Characterizations

UH: XRD, FTATR, Raman, PCT, (¹¹B, ¹H, ²⁵Mg) NMR, TGA, DSC, TEM. NREL: TPD-Mass spec. HYMARC: Advanced Spectroscopy Techniques (LEIS, XES, XAS).

- In situ NMR studies of dehydrogenation of modified Mg boranes
- Determine the factors that limit H_2 cycling kinetics.

Computations: HYMARC-LLNL

• Effect of additives on hydrogenation of MgB₂.

Summary

- Modified MgB₂ that can be hydrogenated under milder conditions have been prepared.
- Demonstrated hydrogenation of bulk MgB_2 to $Mg(BH_4)_2$ at 300 °C and 700 bar.
- Hydrogenation of MgB_2 to $Mg(BH_4)_2$ at 300 °C and 700 bar has been proven in absence of tetrahydrofuran.
- MD simulations indicate orientation-dependent reactivity of MgB₂ with THF.
- Greater than 7 wt% $\rm H_2$ released from MgB_2-X-THF material hydrided at 300 °C and 700 bar.

Bulk MgB ₂ Hydrogenation Conditions	State of Art	FY 17 Results
Pressure/ bar	≥900	700
Temperature/ °C	~400	300

Simultaneous lowering of bulk MgB₂ hydrogenation conditions from 900 bar and 400 °C to 700 bar and 300 °C has been demonstrated for first time.

Acknowledgement

<u>University of Hawaii Team</u> Prof. C.M. Jensen Mr. Stephen Kim Mr. Cody Sugai

HyMARC Consortium: Making facilities and expertise available to the Project.

HySCORE Consortium: Making TPD, Mass spec and expertise available to the Project.

EERE's Fuel Cell Technologies Office: Funding.

Technical Back-Up Slides