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Barriers addressed
– Volumetric Density
– Gravimetric Density

Project Start Date: Sept 1st, 2017
Project End Date: August 31st, 2018

Total Project Budget: $1,047,000
Federal Share:

UM: $807,000
Ford: $192,000
Total: $999,000

$250,000 (Y1)
$398,000 (Y2)
$351,000 (Y3)

Cost Share: $48,000 (Ford)
Total Funds Spent:* ~$100,000

*Estimated as of 4/30/18

Timeline and Budget Barriers

Interactions/collaborations: 
Ford Motor Company, Hydrogen 
Storage Engineering Center of 
Excellence (HSECoE)

Project lead: 
Don Siegel, University of Michigan

Partners

Overview



• A high-capacity, low-cost method for storing hydrogen remains one of the 
primary barriers to the widespread commercialization of fuel cell vehicles 

• Storage via adsorption in MOFs is promising due to their fast kinetics, 
reversibility, and tunable properties

• A viable adsorbent must exhibit a high intrinsic (i.e., materials level) H2
capacity, and pack in a dense fashion at the system level

– Our prior screening (project ST122) revealed that no known MOF exhibits a usable 
volumetric capacity exceeding 40 g H2/L (assuming an isothermal pressure swing 
between 100 and 5 bar at 77 K)

– Analysis by the HSECoE has shown that inefficient materials packing can result in 
capacity reductions of more than 60% compared to the single-crystal level. These 
inefficiencies can negate improvements in volumetric performance achieved at the 
materials level

– The present project addresses both of these challenges

Project goal: Overcome volumetric limitations associated with 
physisorptive hydrogen storage at both the materials and 

systems level in metal-organic frameworks (MOFs) 3

Background (1)
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Relevance (1)
Screening of ~500,000 MOFs reveals that essentially no compounds exceed 

40 g/L usable capacity 
 New MOFs needed to break through volumetric ceiling
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Relevance (2)
Packing inefficiencies result in significant volumetric penalties in 

adsorptive hydrogen storage systems 
 Increase packing density via crystal engineering

Data courtesy of Justin Purewal, Ford Motor Company



Objective 1: Apply machine learning techniques to identify, 
design, and demonstrate high-capacity MOFs 

– Demonstrate usable volumetric capacities exceeding 50 H2 g/L 
(single-crystal/pressure swing) 

– No compromise to gravimetric capacity, kinetic performance, or 
reversibility

– If successful, these compounds will set a new high-water mark for H2 
density in adsorbents at cryogenic conditions

Objective 2: Control MOF crystal morphology and crystallite 
size distribution to increase packing density 

– Increase packing density of target high capacity MOF by at least 30% 
(compared to its powder tap density)

– Do so with less than 15% decrease in gravimetric performance

6

Relevance (3)
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Year 1 Milestones
Milestone Summary Table

Recipient Name: University of Michigan
Project
Title: Optimized Hydrogen Adsorbents via Machine Learning and Crystal Engineering

Task
Number

Task or
Subtask

Title

Milestone
Type

Milestone
Number Milestone Description

Milestone Verification
Process

Quarter 
(from Start) Status

1.0

1.1
MOF

performance
from scratch

Milestone M1.1.1

Demonstrate ability to predict usable
capacity of an arbitrary MOF to within 85%

of GCMC capacity using only crystal
structure as input

Comparison of machine learning
prediction with GCMCcalculation 1 Complete

1.2
Structure-

performance
correlations

Milestone M1.2.1
Correlate MOF geometric properties with

capacity

Random forest, latent variable, or
support vector machine analysis of

MOF properties
2 Complete

1.3
MOF reverse
engineering Go/No-Go D1

Identify ranges for 4 MOF crystallographic 
properties (surface area, density, pore volume,
& porosity) consistent with usable volumetric

capacity of at least 40 g/L and usable 
gravimetric capacity of at least 7 wt. % 

(assuming an isothermal pressure swing 
between 100 and 5 bar at 77 K) based on single 
crystal density. Demonstrate that the identified 

ranges are within the realm of possibility for 
the development of new MOFs, and thus 
provide a pathway for meeting the DOE 

storage targets.

Random forest or SVM analysis of MOF
properties and direct GCMC

simulation
4 On Track

2.0

2.1
Morphological

engineering Milestone M2.1.1
Identify at least 2 additives capable

of controlling morphology from
cubes to octahedra

Optical microscopy or SEM
measurements 3 In progress – on schedule
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Approach

Accomplishments: MOF-5 Benchmark

Notes:
• Unless otherwise stated, all measurements and calculations are 

performed at T = 77 K.



J. Goldsmith, et al., 
Chem. Mater., 25, 3373 (2013). 

Prior work: developed a database of MOFs by mining the CSD. Chahine rule
and crystal structure were used to predict H2 capacity in thousands of compounds  

9

High-throughput Screening
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MOF Database

Source Available in 
database

Zero surface 
area

H2 capacity 
evaluated empirically

H2 capacity evaluated 
with GCMC

UM+CoRE+CSD17 (RM) 15,235 2,950 12,285 12,799
Mail-Order MOFs (MO) 112 4 108 112
In Silico MOFs (IS) 2,816 154 2,662 466
In Silico Surface MOFs (ISS) 8, 885 283 8,602 1,058
MOF-74 Analogs (M74) 61 0 61 61
ToBaCCo (TB) 13,512 214 13,298 290
Zr-MOFs (ZR) 204 0 204 204
NW Hypothetical MOFs (NW) 137,000 30,160 106,840 12,374
UO Hypothetical MOFs (UO) 324,500 32,993 291,507 16,372
In-house synthesized via 
hypothetical design 18 0 18 5

Total 493,458 66,758 435,585 43,741

RM: (a) UM: J.Goldsmith, A. G. Wong-Foy, M. J. Cafarella, and D. J. Siegel, Chem. Mater., 25 , 3373–3382 (2013); (b) CoRE: Y. G. Chung, et al., Chem. Mater., 26, 6185–6192 (2014);  
(c) CSD17: P. Z. Moghadam et al., Chem. Mater., 29, 2618–2625 (2017).
MO: R. L. Martin, L.-C. Lin, K. Jariwala, B. Smit, M. Haranczyk, J. Phys. Chem. C 117, 12159-12167 (2013); 
IS: Y. Bao, R. L. Martin, M. Haranczyk, M. W. Deem, J. Phys. Chem. C 119, 186-195 (2015).
ISS: Y. Bao, R. L. Martin, C. M. Simon, M. Haranczyk, B. Smit, M. W. Deem, Phys. Chem. Chem. Phys., 17, 11962-11973 (2015).
M74: M. Witman, S. Ling, S. Anderson, L. Tong, K.C. Stylianou, B. Slater, B. Smit, M. Haranczyk, Chem. Sci., 7, 6263-6272 (2016).
TB: Y. J. Colón, D. A. Gómez-Gualdrón, and R. Q. Snurr, Cryst. Growth Des., 17, 5801–5810 (2017).                              
ZR: D. A. Gómez-Gualdrón, O.V. Gutov, V. Krungleviciute, B. Borah, J. E. Mondloch, J. T. Hupp, T. Yildirim, O.K. Farha, R.Q. Snurr, Chem. Mater. 26, 5632-5639 (2014).
NW: C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, Nat. Chem. 4, 83−89 (2012).
UO: M. Z. Aghaji, M. Fernandez, P. G. Boyd, T. D. Daff,  and T. K. Woo, Eur. J. Inorg. Chem., 2016, 4505–4511 (2016).

Compiled a MOF database of ~500,000 compounds
43,000+ MOFs assessed for temperature+pressure swing storage

~100,000 MOFs assessed for pressure swing storage
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• GCMC = atomistic method that calculates the total amount of H2 (adsorbed + gas 
phase) contained within the pore space of a MOF at given T, P

• Does not rely on empirical correlations such as the Chahine-rule

*Michels, de Graaff and Seldam, Physica, 1960, 26, 393; Ryan, Broadbelt, and Snurr, Chem. Comm. 2008, 4134 
**Fischer, Hoffmann, Fröba, ChemPhysChem, 2009,10, 2647.

H2 
Molecule 

Unified 
Atom 
Model

• Calculations employ the MGS* and the Pseudo-
FH** unified atom models for H2-MOF interactions

• MOF atoms are fixed

Example GCMC simulation of CH4 adsorption 
in Ni-DOBDC at 298 K and 35 bar

Force Field Sigma (Å) Epsilon/kB (K)

MGS 2.958 36.7

Pseudo-FH 3.064 30.1

Grand Canonical Monte Carlo
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GCMC isotherms calculated with the pseudo-Feynman-Hibbs interatomic 
potential are in very good agreement with our measured isotherms

Examples of Simulated Isotherms
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High-Throughput Screening
Predicted usable H2 capacities for PS and TPS conditions

• Pressure swing: Pmax= 100 bar to Pmin= 5 bar at 77 K
• Temp+pressure swing: Tmin= 77 K, Pmax= 100 bar to Tmax= 160 K, Pmin= 5 bar

BLUE = TPS
BLACK = PS

MOF-5 (7.8 wt.% & 51.9 g/L)

MOF-5 (4.5 wt.% & 31.1 g/L)
IRMOF-20 (5.7 wt.% & 33.4 g/L)
SNU-70 (7.3 wt.% & 34.3 g/L)
NU-100 (10.1 wt.% & 35.5 g/L)

Only 180 MOFs
surpass MOF-5
under TPS 
conditions. 

Only 180 MOFs
surpass MOF-5
under TPS 
conditions. 



Concept
Machine learning will be used to guide the development of MOFs with high 

volumetric H2 capacities 
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• Packing of congruent convex objects indicates that particle morphology and 
the size distribution are key factors in determining packing efficiency 

• We shall vary these properties systematically, leveraging advances in colloid 
science for the controlled growth of MOFs with various shapes and sizes 

Crystal Engineering

Fig. 1: Synthesis of octahedral-shaped MOF-5 crystals by addition of H3BTB in the reaction mixture of H2BDC and Zn(NO3)2⋅6H2O.
Photographs show the dependence of crystal morphology on the percentage of H3BTB (scale bar: 100 µm). Another phase (needle
shaped UMCM-1) appears at 10 mol% H3BTB. From Matzger et al., JACS (2011) 133, 20138

Fig. 2: Average size of HKUST-1 crystals as a function of
dodecanoic acid concentration taken at longer and longer
times. Colors represent different concentration of dodecanoic
acid. From Diring, et al., Chem. Mater., (2010) 22, 4531
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Accomplishments and Progress

Accomplishments: MOF-5 Benchmark
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Input Features & Output Properties

Geometrical Features from Zeo++ H2 Capacity from GCMC

1. Pore Volume (PV, cm3/g)
2. Void Fraction (VF)
3. Gravimetric Surface Area (GSA, m2/g)
4. Volumetric Surface Area (VSA, m2/cm3)
5. Largest Cavity Diameter (LCD, Å)
6. Pore Limiting Diameter (PLD, Å)
7. Density (D, g/cm3)

1. TG and TV at at 5 bar & 77K.
2. TG and TV at 35 bar & 77K
3. TG and TV at 100 bar & 77K
4. UG and UV for Pressure Swing 

between 5 and 35 bar at 77 K.
5. UG and UV for Pressure Swing 

between 5 and 100 bar at 77 K.

7 Crystallographic Features H2 Adsorption at 10 Conditions

TG & TV = Total gravimetric and volumetric capacity.
UG & UV = Usable gravimetric and volumetric capacity

*Zeo++: T.F. Willems, C.H. Rycroft, M. Kazi, J.C. Meza, and M. Haranczyk, Algorithms and tools for high-throughput geometry- based 
analysis of crystalline porous materials, Microporous and Mesoporous Materials, 149 ,134-141 (2012).
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12 supervised learning methods from 5 different categories were used

ML Methods Tested

• Scikit-learn: Pedregosa et al.,  Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825-2830, 2011.
• R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Linear Regression; Ridge Regression (Generalized Linear Model)
T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

Random Forest (RF)
L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.

Bagging with DT; Bagging with RF (Bagging)
L. Breiman, “Bagging predictors”, Machine Learning, 24(2), 123-140, 1996.

Boosted DT; Ada Boost with RF (Ada Boost)
H. Drucker. “Improving Regressors using Boosting Techniques”, 1997

Gradient Boosting
J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

Extremely Randomized Trees 
P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006.

Support Vector Machine (SVM) 
A. J. Smola, B. Schölkopf,  “A Tutorial on Support Vector Regression”, Statistics and Computing archive, 14(3), 199-222, 2004.

K-Nearest Neighbors (K-NN) 
N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression”. The American Statistician. 46(3), 175–185, 1992.

En
se

m
bl

e 
M

et
ho

ds

Decision Trees (DT) 
L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth, Belmont, CA, 1984.

Machine Learning Software & Code: Scikit-learn, R, & in-house code
Hyperparameter Optimization Method: Grid search cross validation method

Training Set: 74, 221;   Test Set:  24,741;  Unseen Data Set: 394,496
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ML Predictions of Capacities
Comparison between Extremely Randomized Trees ML prediction and GCMC

R2 = 0.995

AUE = 0.15 wt.%
RMSE = 0.25 wt.%

R2 = 0.983

AUE = 1.0 g/L
RMSE = 1.4 g/L

Kendall 𝜏𝜏 = 0.92 Kendall 𝜏𝜏 = 0.96
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Benchmarking ML Methods
The Extremely Randomized Trees method is the best performing ML algorithm
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Comparison of ML Methods
The Extremely Randomized Trees method is the best performing ML algorithm

Usable Gravimetric Capacity 
Pmax = 100 bar

Usable Volumetric Capacity 
Pmax = 100 bar
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Structure-Property Correlations

Each point on the plot represents the highest R2 value among 
all possible(2n -1) combinations of (n = 1,2,3,4,5,6,7) features

• Void fraction shows the strongest correlation with UV
• Only 4 features needed to predict UV with over 96% accuracy

Single Feature PerformanceEffect of Number of Features
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Structure-Property Correlations
ML models were developed for all possible (27-1 = 127) combinations of features 

to identify the optimal feature set

Usable Gravimetric Usable Volumetric

Each histogram represents the highest R2 value among 
all possible combinations of a given number of features. 
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H2 Storage in 500,000 MOFs 

NW
RM

UO
OT = IS + ISS + M74 + MO + TB + ZR 

ML reveals 69,363 MOFs that can potentially out-perform IRMOF-20, the top 
performing MOF on a volumetric basis

IRMOF-20: 5.7 wt.% & 33.4 g/L
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Crystal Size Control (1)

Synthesis Protocols
Varying Metal:Linker ratio

Successfully developed synthesis protocols that produce MOF-5 with different average sizes 

Zn(NO3)2·6H2O

DEF, 100 °C (12hr) 

+

1000 μm 

1000 μm1000 μm

1000 μm

M:L=1.5 M:L=2.5 M:L=3.5 

Agitating 
reaction mixture

100-400 μm 500-1000 μm 1300-1900 μm

50-150 μm

100-250 μmM:L=1.5 
100 rpm

60 rpm
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Crystal Size Control (2)
Crystal size histograms indicate the successful control over crystal size 

1000 μm 

1000 μm

1000 μm

Mean = 758 µm
Standard Error = 13
Coefficient of Variation = 0.28
Median = 754
Mode = 737
Standard Dev. = 210
Count = 253

Mean = 1633 µm
Standard Error = 39
Coefficient of Variation = 0.24
Median = 1590
Mode = 1675
Standard Dev. = 389
Count = 97

Mean = 192 µm 
Standard Error = 1.9
Coefficient of Variation = 0.29
Median = 179
Mode = 174
Standard Dev. = 56
Count = 828

Varying the size distribution of cubic MOF-5 crystallites
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Crystal Size Control (3)
Crystal size histograms indicate the successful control over crystal size 

80 µm  

80 µm  

Varying the size distribution of cubic MOF-5 crystallites
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Morphology Control (1)
Identified additive capable of controlling morphology of MOF-5 crystals

H2BDC
H3L

+
Zn(NO3)2·6H2O

DEF, 100 °C

0% H3L 5.8% H3L/24h 5.8% H3L/48h

Cubo-oct.OctahedronCubic

Phase purity
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Morphology Control (2)
Identified additive capable of controlling morphology of MOF-5 crystals

Zn(NO3)2·6H2O

DEF, 100 °C
0% H4L 1.6% H4L/24h

H2BDC

+

H4L

6.6% H4L/24h 6.6% H4L/48h

cubic

sphere
Sphere
+ Oct.

Cubo-oct

Phase purity

H4L=5’-((3,5-dicarboxyphenyl)ethynyl)-[1,1’:3’,1’’-terphenyl]-4,4’’-
dicarboxylic acid) 
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University of Michigan, Mechanical Engineering
– Atomistic simulation and project management

University of Michigan, Dept. of Chemistry
– Synthesis and characterization of targeted MOFs

Ford Motor Company (sub-contractor)
– PCT measurements
– Materials augmentation, characterization, scale-up, and 

system modeling

HSECoE/SRNL (unfunded collaborator)
– Assistance with system models (David Tamburello)

Collaborations
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• Many more compounds identified by computation than can 
be synthesized
– Assessment by a human is needed before synthesis can proceed
– This is a bottleneck

• Structure collapse or incomplete solvent removal during 
activation
– “Can it be made?”
– Failure to achieve expected surface area and porosity
– Properties that control “synthesizability” are not well-understood

• Incorrect, incomplete, or disordered crystal structure data
– Garbage in, garbage out
– False positives in screening

Challenges and Barriers
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• Pass 1st go/no-go milestone: Identify ranges for 4 
MOF crystallographic properties consistent with 
usable volumetric capacity of at least 40 g/L and 
usable gravimetric capacity of at least 7 wt. %

• Particle Size Control: Determine if particle size 
influences packing efficiency by more than 10% for 
particles whose size varies by more than 10x

• Hybrid Approaches to Space Filling: Identify binary 
mixtures for a given morphology that yields the 
highest packing efficiency

Potential Future Work

Any proposed future work is subject to change 
based on funding levels
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• Goal: Overcome volumetric limitations associated with physisorptive
hydrogen storage at both the materials and systems level in metal-organic 
frameworks (MOFs)

• Approach:
– Control MOF crystal morphology and crystallite size distribution to increase packing 

density 
– Apply machine learning techniques to identify, design, and demonstrate high-

capacity MOFs 

• Accomplishments:
– Benchmarked 12 ML algorithms for their ability to predict H2 storage. The Extra 

Trees algorithm was found to be highly accurate; used to screen 500,000 MOFs. ML 
predictions are accurate because the input features are “good”

– Discovered  ~70,000 MOFs capable of outperforming IRMOF-20, the top 
performing MOF reported to date

– Successfully developed synthesis protocols that produce MOF-5 with different 
average sizes. Identified additive capable of controlling morphology of MOF-5 
crystals

umich.edu/~djsiege
djsiege@umich.edu

Summary
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Justin Mike Antek

Adam

Alauddin Don

The Team

Darpan
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Technical Backup Slides
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