

Developing A New Polyolefin Precursor for Low-Cost, High-Strength Carbon Fiber

Mike Chung, Gang Zhang, Joseph Sengeh

Department of Materials Science and Engineering The Pennsylvania State University

DOE Hydrogen Program Annual Merit Review and Peer Evaluation Meeting Washington, D.C., June 13-15, 2018

Project ID: ST147

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 9/1/2017
- Project end date: 8/31/2020
- % complete: 30%

Budget

- Total project funding: \$930,888
- DOE share: \$804,462
- Penn State share: \$127,181
- Funding for FY2017-18: \$ 306,363
- Go/no-Go decision: August 2018

Barriers

- System weight & volume
- System cost, efficiency, durability
- Charging/discharging rates
- Suitable H₂ binding energy
- High polymer surface area

Partners

- LightMat consortium
- Oak Ridge National Lab.

Relevance

Research Objectives

- Developing a new polyolefin precursor that is melt-processible and high thermal conversion yield to form carbon fiber (CF).
- Co-carbonization with B-containing precursor to prepare B-doped CF with reduced temperature, high yield, smaller d-spacing.
- Cost savings can be realized through the combination of low cost precursor, melt-spinning fiber process, low carbonization temperature, high mass yield, and high tensile strength in the B-doped CF.

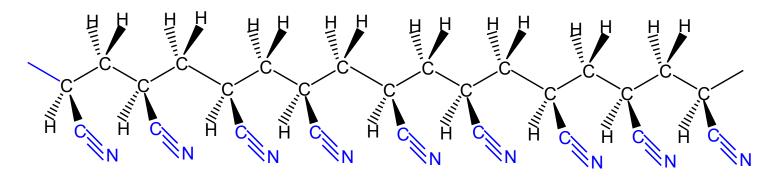
Potential Benefits and the Impact on Technology

 If successful, this new technology can offer a cost-effective CF for fabricating onboard storage vessel with compressed hydrogen (700 bars) in FCEVs. The main objective is to achieve the DOE cost target of \$10/kWh (about \$1,900 per vehicle with 5.6 Kg of usable hydrogen). It also can impact other energy-relative applications, such as wind blades, flywheels, transportation, etc.

Relevance: DOE cost targets

5 gallon tank with 700 bars pressure 5 kg H₂ storage for 300 miles driving range (45-60 miles/kg H₂) High Cost (~ 3,000 per vehicle) Composite overwrapped pressure vessel for 5.6 Kg usable hydrogen

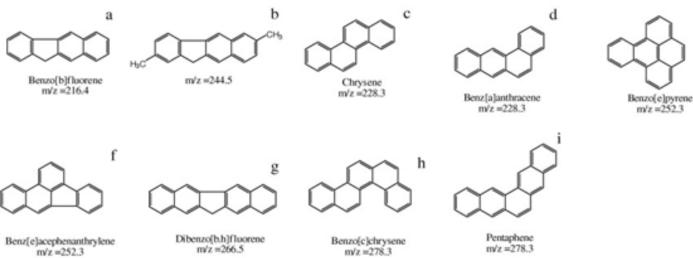
	Energy cost (\$/kWh)	System cost (\$/vehicle)
2013 system	\$17	\$3,200
2015 system	\$15	\$2,800
DOE Target	\$10	\$1,900


Type IV COPV system with polymer liner and annual production rate of 500,000 systems

DOE 2015 cost analysis indicated that 62% of the system cost would come from the cost of carbon fiber (CF)

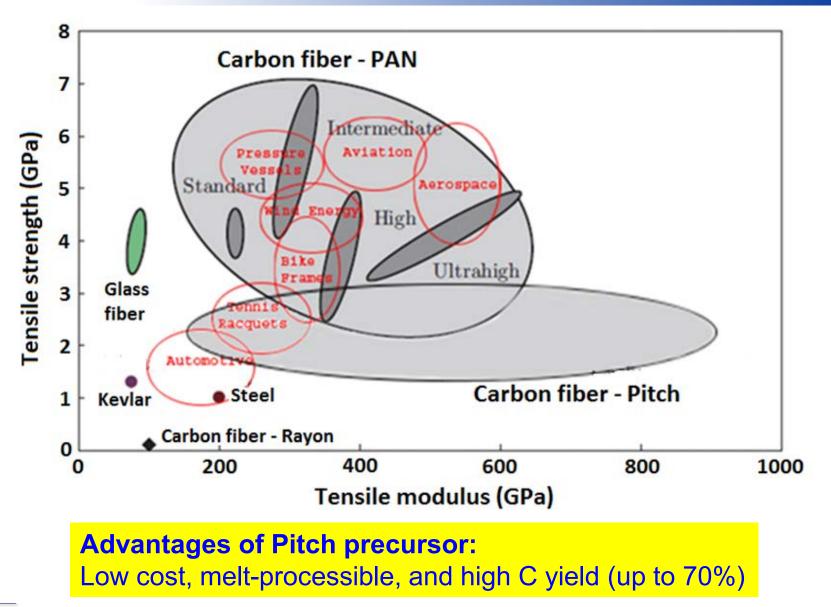
Relevance: Current CF precursors

Polyacrylonitrile (PAN)

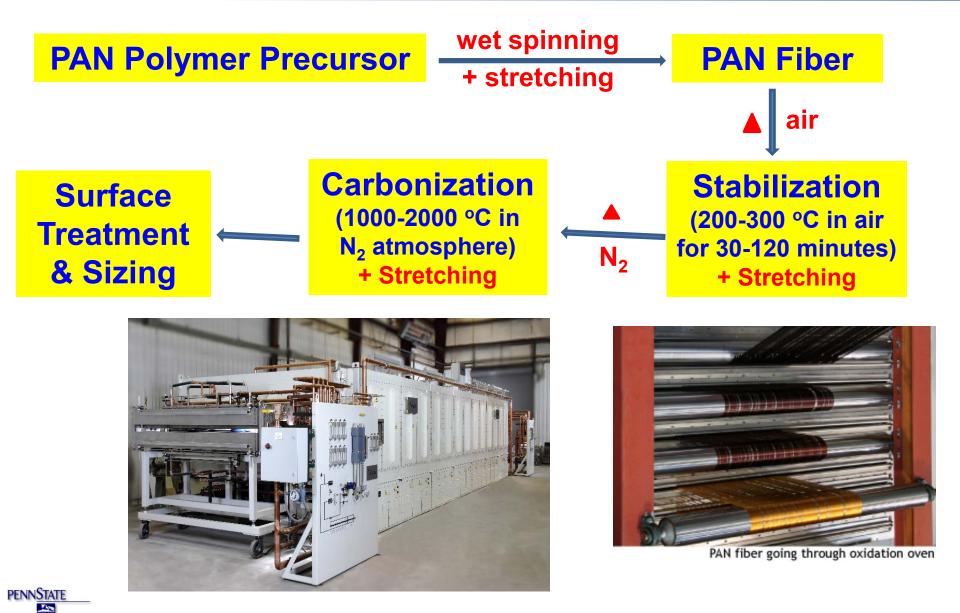


Pitch (petroleum)

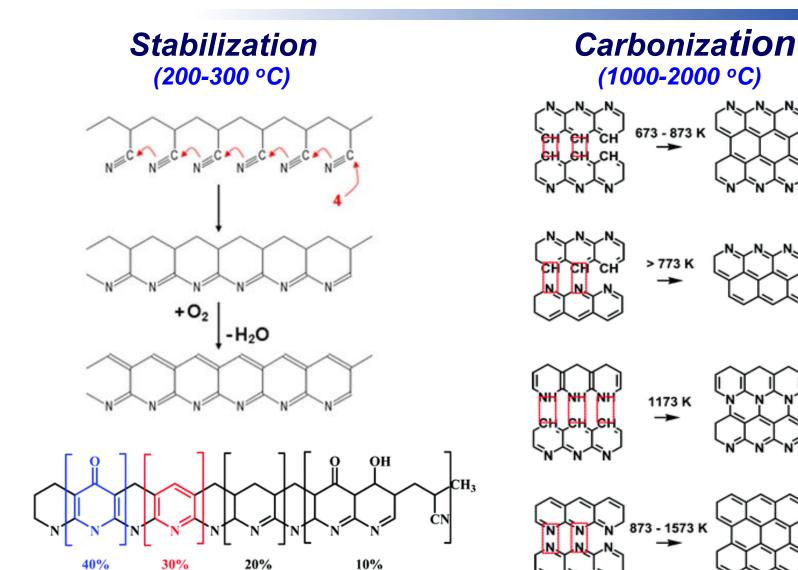
Pitch (coal tar)


Oligomeric mixture of polycyclic aromatic hydrocarbons (PAH) with molecular weight 200-800 PAH and Phenols make up two large classes of chemicals.

e



Relevance: Tensile Properties



PENN<u>STATE</u>

Relevance: Current thermal production process

Relevance: PAN thermal conversion

H₂

+

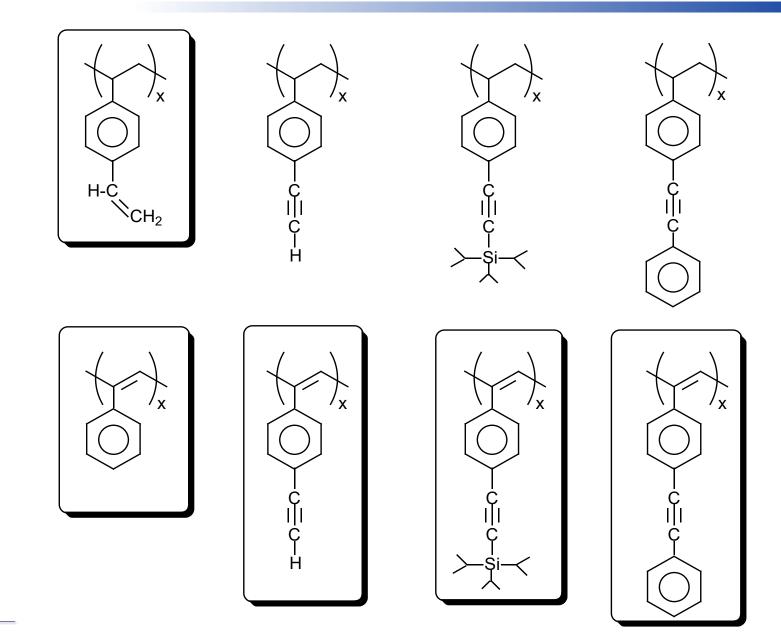
 H_2

N₂

+

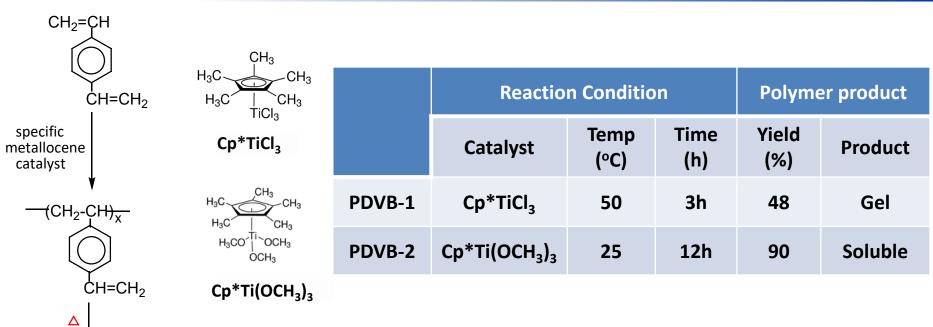
Overall thermal conversion yield ~50%

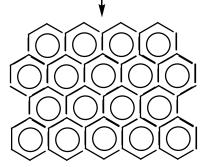
			Milesto	one Summary Table				
	Recipient Name: T. C. Mike Chung							
	Project Title: Developing A New Polyolefin Precursor for Low-Cost, High-Strength Carbon Fiber							
Task Number	Task or Subtask (if applicable) Title	Milestone, Go/No-Go Decision	Milestone Number	Milestone Description (Go/No-Go Decision Criteria)	Milestone Verification Process*	Anticipated Date (Months)	Anticipated Quarter (Quarters)	
1	Synthesis of Diene Monomers	Milestone	M1.0	Synthesis route and two diene monomers	¹ H and ¹³ C NMR spectra of the resulting monomers.	1-2	1	
2.1	Synthesis of PE Copolymers with DVB and BSt units	Milestone	M2.1	Confirm two resulting polymer structures	GPC curves and ¹ H NMR spectra of two polymers.	3-6	1-2	
2.2	Synthesis of Poly(DVB) and Poly(BSt) Homopolymers	Milestone	M2.2	Confirm two resulting polymer structures	GPC curves and ¹ H NMR spectra of two polymers.	7-9	2-3	
3	Stabilization and Carbonization Study	Milestone	M3.0	Convert precursors to C materials	mass yield, TEM, XRD, elemental analysis.	8-12	2-4	
1 st Go/No-Go Decision		A new low-cost polyolefin precursor that can be prepared and transformed to C with mass yield (>80%), more than 60% higher than that of current PAN.				Send 10 slides to LightMat /DOE		
4	Scaling Up the Selected Polyolefin Precursors	Milestone	M4.0	Selected precursors with Kg quantity	¹ H NMR, GPC, DSC and TGA spectra.	13-15	5	
5.1	Melt-Spinning of Polyolefin Precursors	Milestone	M5.1	Fiber-spinning to polyolefin fibers	Pictures and Strain-stress curves.	16-21	6-7	
5.2	Carbonization of Polyolefin Fibers	Milestone	M5.2	New polyolefin based CF products	TEM, SEM, XRD, Instron, and elemental analysis .	19-24	7-8	
2 nd Go/No-Go Decision		A new low-cost and high-quality carbon fiber obtained from a new polyolefin precursor and melt-spinning process.			Send 10 slides to LightMat /DOE			
6.1	Co-carbonization study of Polyolefin Blends with B-Precursors	Milestone	M6.1	New B-doped C (BCx) materials	¹³ C and ¹¹ B NMR spectra and elemental analysis	25-30	9-10	
6.2	Melt-Spinning of Polyolefin Blends with B-Precursors	Milestone	M6.2	Fibers from B-containing polymer blends	Pictures and Strain-stress curves.	28-33	10-11	
6.3	Carbonization of Polyolefin Blend Fibers	Milestone	M6.3	New B-doped CF (B-CF)	TEM, SEM, XRD, Instron, and elemental analysis	31-36	10-12	



Approach: Design new polyolefin precursors

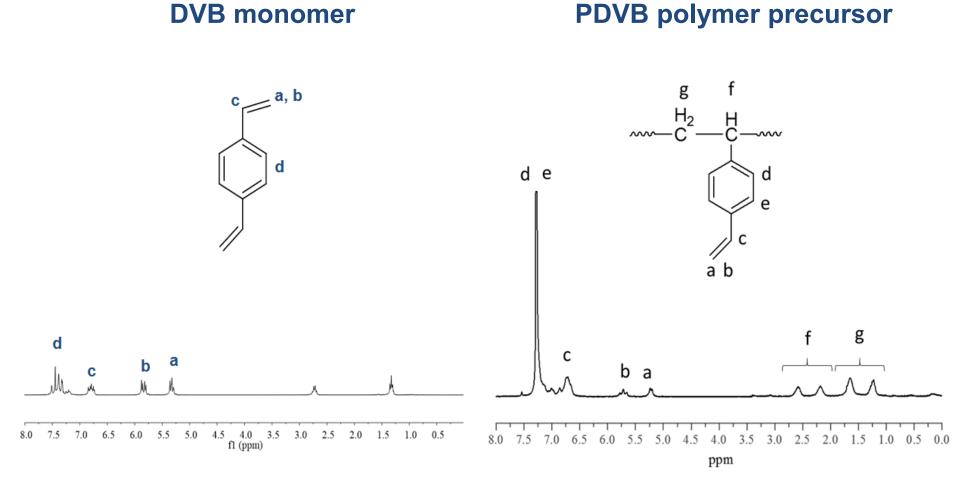
- Semi-crystalline hydrocarbon polymer (>80% C content)
- Melt-spinning to fibers with good tensile strength
- Reactive side groups for thermal conversion
- Facile stabilization reaction at <300 °C
 - Forming ladder/conjugated chain structure
 - No external reagent required
 - > No by-product formed, except H_2 and H_2O
- Effective thermal conversion with a high C yield (>80%)
- Low cost and scalable




Approach: New polyolefin precursors

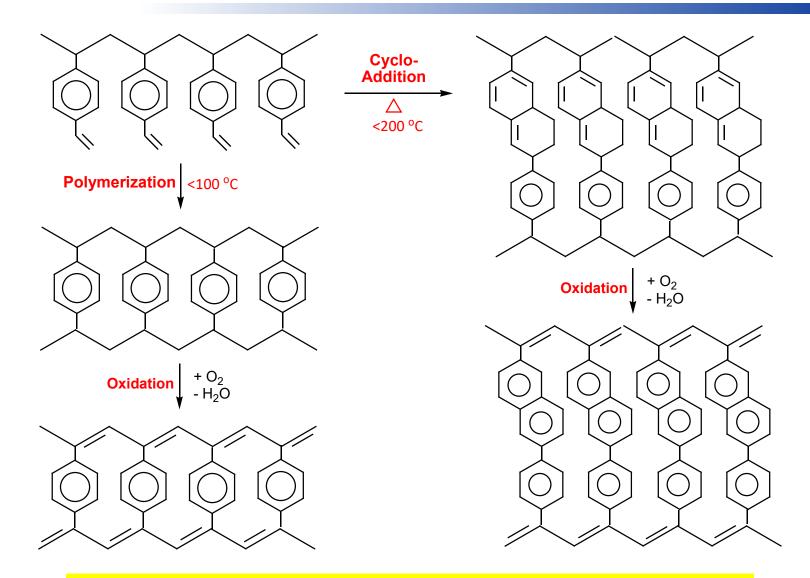
PENN<u>STATE</u>

Accomplishments: Synthesis of Poly(divinylbenzene) PDVB precursor



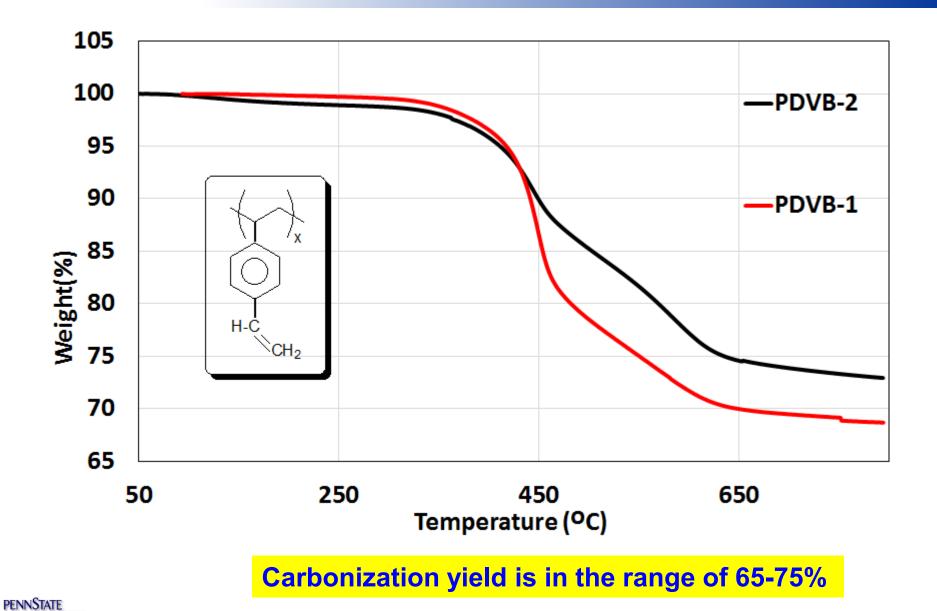
PENNSTATE

Benefits of Cp*Ti(OCH₃)₃-mediated polymerization:


- Mono-enchainment of DVB monomers
- Processible PDVB polymer (soluble in solvents)
- High polymer conversion
- Syndiotactic polymer backbone structure
- Semi-crystalline morphology

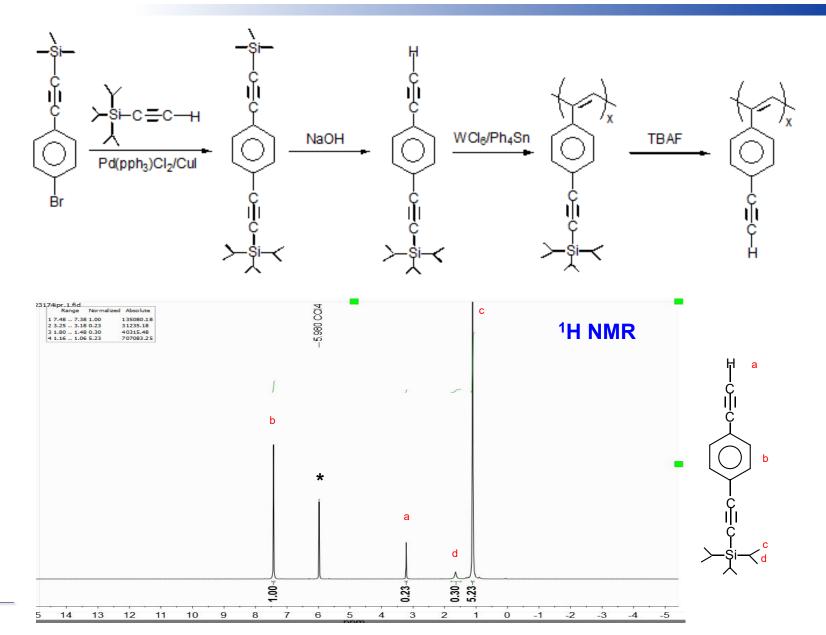
Accomplishments: ¹H NMR spectra

PENN<u>STATE</u>

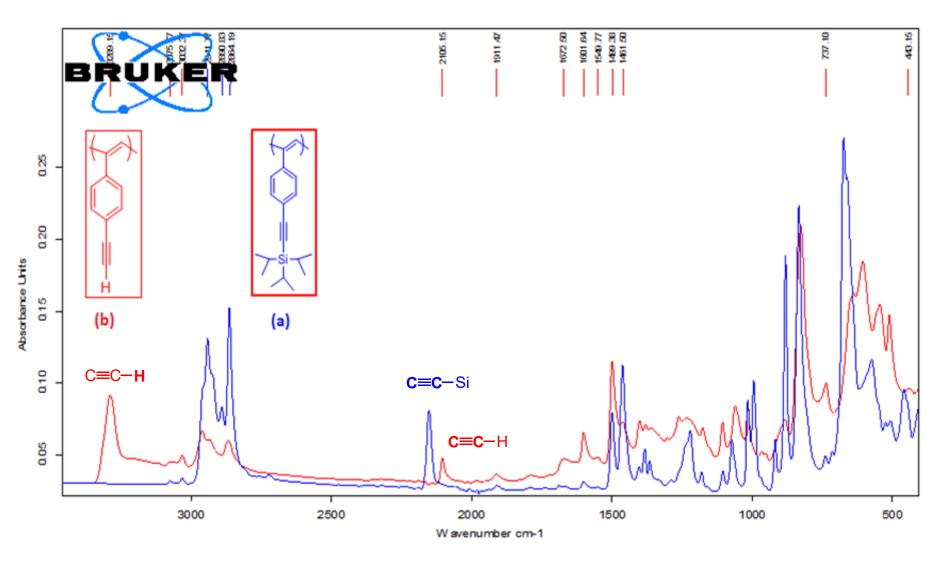

Approach: Stabilization mechanism (by heat)

- Low temp. stabilization reactions via styrenyl side groups.
- Both reaction mechanism s require no external reagent.

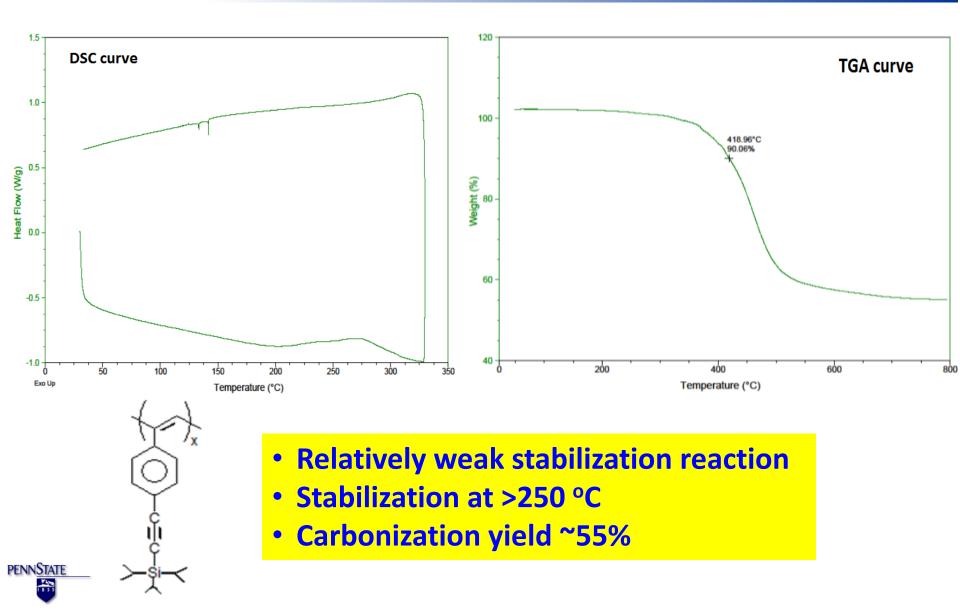
PENNSTATE


Accomplishments: TGA curves of PDVB precursors

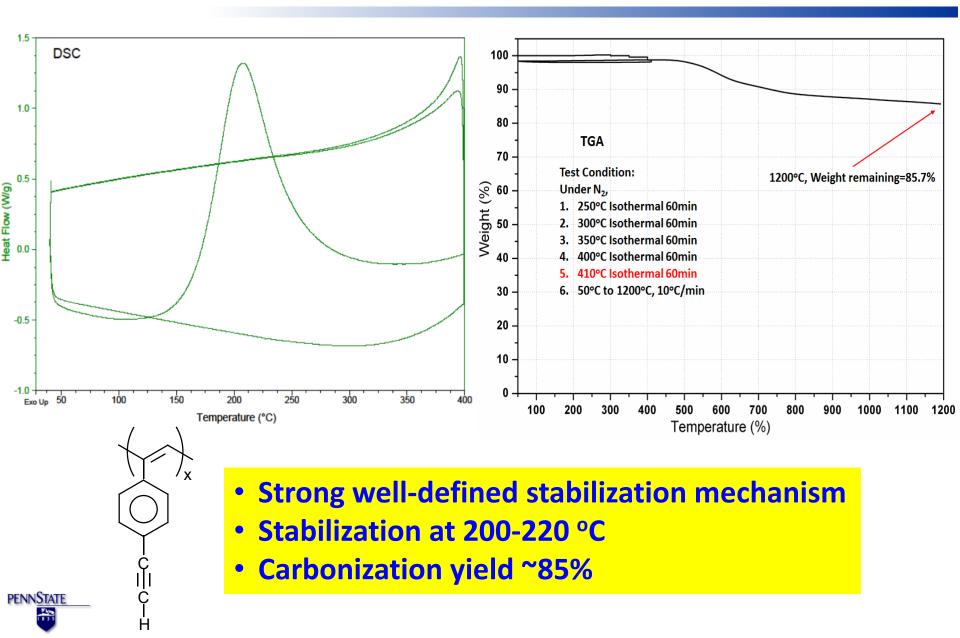
Accomplishments: TGA curves of PDVB precursors

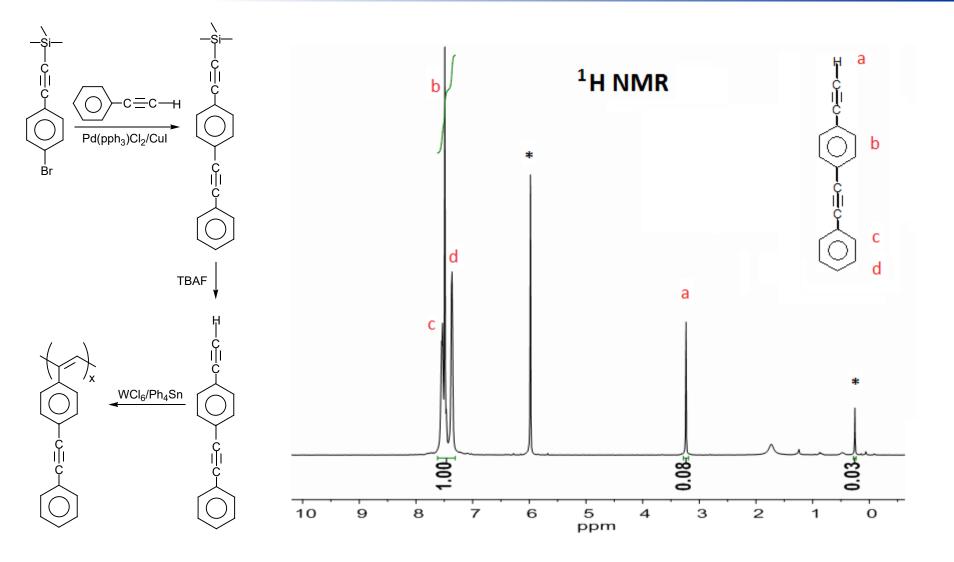


Accomplishments: Synthesis of Poly(phenylacetylene) derivatives

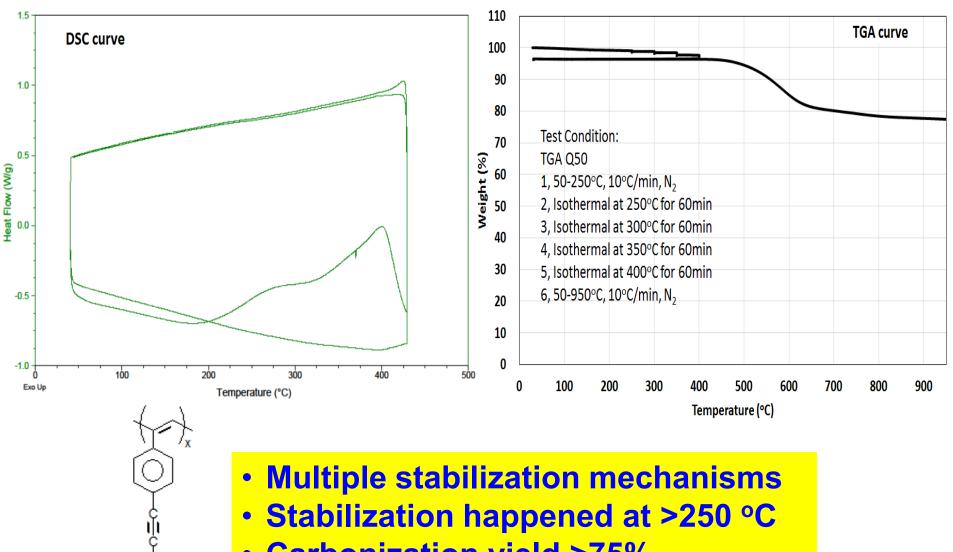

PENN<u>State</u>

Accomplishments: FTIR spectra of Poly(phenylacetylene) derivatives




Accomplishments: DSC and TGA curves of Poly(phenylacetylene) acetylsilane-derivatives

Accomplishments: DSC and TGA curves of Poly(phenylacetylene) acetyl-derivatives

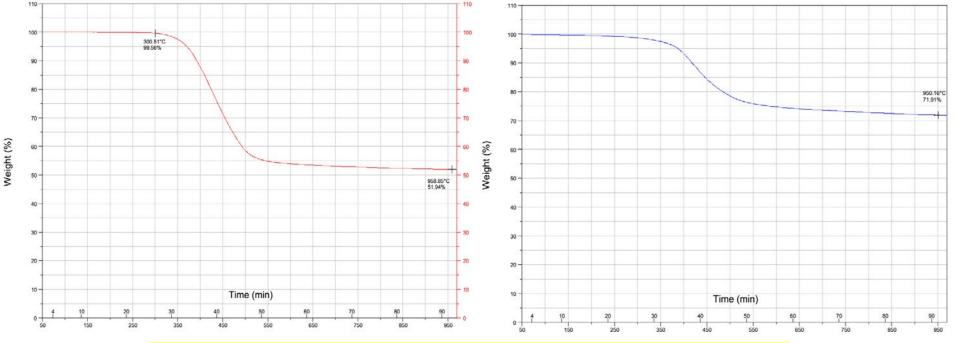


Accomplishments: Synthesis of Poly(phenylacetylene) acetylphenyl derivatives

PENN<u>STATE</u>

Accomplishments: DSC and TGA curves of Poly(phenylacetylene) acetylphenyl-derivative

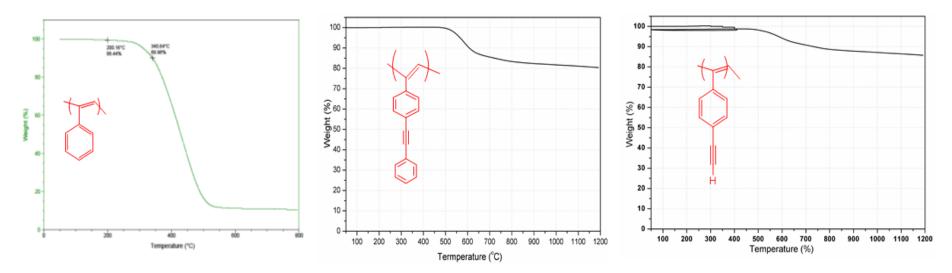
Carbonization yield >75%


PENNSTATE

Accomplishments: Co-carbonization between Petroleum pitch and B-precursor

DSC curve comparison

Petroleum pitch



- B elements incorporated in pitch in forming mesophase B-pitch precursor
- B enhances carbonization process
- Increase carbonization yield

Summary

- Conducting a systematical study (design, synthesis, and evaluation) to identify the suitable polymers with high carbonization yield.
- Two poly(phenylacetylene) derivatives show carbonization yield higher than 80%.
- Synthesis of B-containing pitch precursor that enhances the carbonization process.
- Collaborating with ORNL in fiber processing, thermal conversion, and carbon fiber evaluation.

PENNSTATE

Future Work

Milestone Summary Table							
	Recipient Name: T. C. Mike Chung						
Project Title: Developing A New Polyolefin Precursor for Low-Cost, High-Strength Carbon Fiber							
Task Number	Task or Subtask (if applicable) Title	Milestone, Go/No-Go Decision	Milestone Number	Milestone Description (Go/No-Go Decision Criteria)	Milestone Verification Process*	Anticipated Date (Months)	Anticipated Quarter (Quarters)
1	Synthesis of Diene Monomers	Milestone	M1.0	Synthesis route and two diene monomers	¹ H and ¹³ C NMR spectra of the resulting monomers.	1-2	1
2.1	Synthesis of PE Copolymers with DVB and BSt units	Milestone	M2.1	Confirm two resulting polymer structures	GPC curves and ¹ H NMR spectra of two polymers.	3-6	1-2
2.2	Synthesis of Poly(DVB) and Poly(BSt) Homopolymers	Milestone	M2.2	Confirm two resulting polymer structures	GPC curves and ¹ H NMR spectra of two polymers.	7-9	2-3
3	Stabilization and Carbonization Study	Milestone	M3.0	Convert precursors to C materials	mass yield, TEM, XRD, elemental analysis.	8-12	2-4
1	st Go/No-Go Decision	A new low-cost polyolefin precursor that can be prepared and transformed to C with mass yield (>80%), more than 60% higher than that of current PAN.			Send 10 slides to LightMat /DOE		
4	Scaling Up the Selected Polyolefin Precursors	Milestone	M4.0	Selected precursors with Kg quantity	¹ H NMR, GPC, DSC and TGA spectra.	13-15	5
5.1	Melt-Spinning of Polyolefin Precursors	Milestone	M5.1	Fiber-spinning to polyolefin fibers	Pictures and Strain-stress curves.	16-21	6-7
5.2	Carbonization of Polyolefin Fibers	Milestone	M5.2	New polyolefin based CF products	TEM, SEM, XRD, Instron, and elemental analysis .	19-24	7-8
2 nd Go/No-Go Decision		A new low-cost and high-quality carbon fiber obtained from a new polyolefin precursor and melt-spinning process.			Send 10 slides to LightMat /DOE		
6.1	Co-carbonization study of Polyolefin Blends with B-Precursors	Milestone	M6.1	New B-doped C (BCx) materials	¹³ C and ¹¹ B NMR spectra and elemental analysis	25-30	9-10
6.2	Melt-Spinning of Polyolefin Blends with B-Precursors	Milestone	M6.2	Fibers from B-containing polymer blends	Pictures and Strain-stress curves.	28-33	10-11
6.3	Carbonization of Polyolefin Blend Fibers	Milestone	M6.3	New B-doped CF (B-CF)	TEM, SEM, XRD, Instron, and elemental analysis	31-36	10-12

Any proposed future work is subject to change based on funding levels