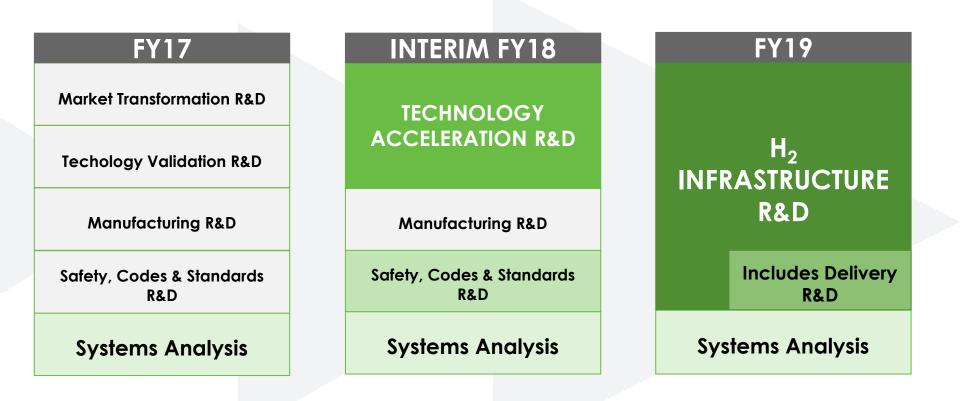


Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

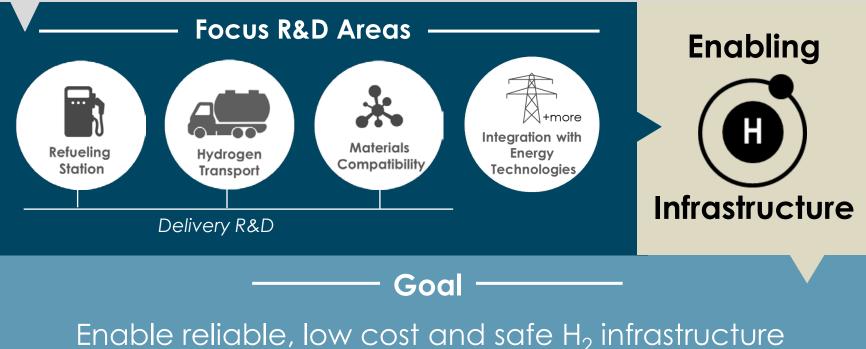
## Technology Acceleration and H<sub>2</sub> Infrastructure R&D Overview


Fred Joseck, Acting Technology Acceleration Manager & Systems Analysis Manager – Fuel Cell Technologies Office 2018 Annual Merit Review and Peer Evaluation Meeting

June 13, 2018 – Washington, DC

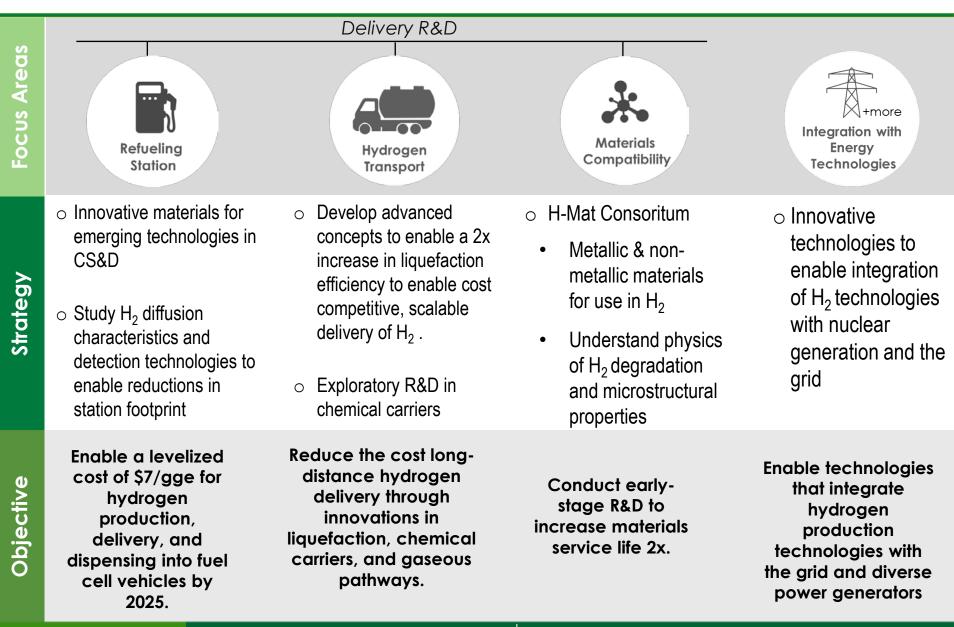


### **New Structure**


Transformation of Technology Acceleration Associated R&D to H<sub>2</sub> Infrastructure R&D from FY17 to FY19



### H<sub>2</sub> Infrastructure R&D Goals and Objective


Focus

The H<sub>2</sub> Infrastructure R&D Sub-program aims to enable hydrogen technologies that connect **diverse domestic resources** across sectors & support **infrastructure development** through **innovative R&D**.



technologies for multiple applications.

### **Objectives & Strategy**



### FY17-19 Budget

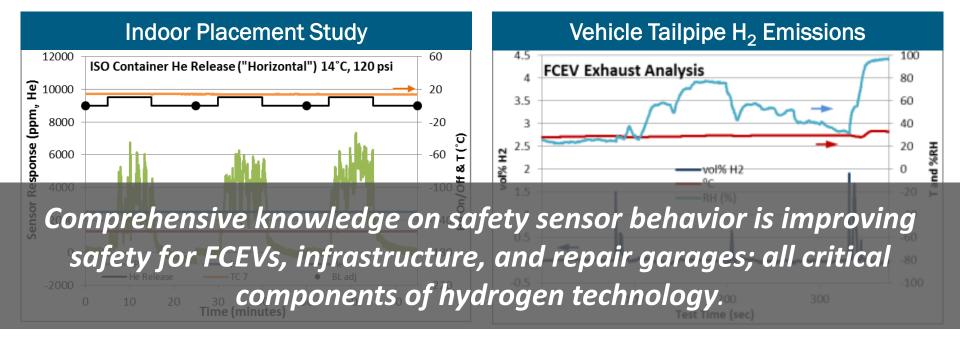
| (Dollars in Thousands)                |                    |                    |                    |              |  |
|---------------------------------------|--------------------|--------------------|--------------------|--------------|--|
| Subprogram Distribution               | FY 2017<br>Enacted | FY 2018<br>Request | FY 2018<br>Omnibus | FY19 Request |  |
| Total Appropriation/Requested Funding | 101,000            | 45,000             | 115,000            | 58,000       |  |
| Fuel Cell R&D                         | 32,000             | 15,000             | 32,000             | 19,000       |  |
| Hydrogen Fuel R&D                     | 41,000             | 29,000             | 54,000             | 19,000       |  |
| Systems Analysis                      | 3,000              | 1,000              | 3,000              | 1,000        |  |
| Safety, Codes and Standards           | 7,000              | 0                  | 7,000              | 0            |  |
| Technology Acceleration R&D           | 18,000             | 0                  | 19,000             | 0            |  |
| H <sub>2</sub> Infrastructure         | 0                  | 0                  | 0                  | 19,000 *     |  |
|                                       |                    |                    |                    |              |  |

\* includes Delivery R&D

\$19M FY19 Request

## Infrastructure Key Focus Areas

#### **Examples:**


Refueling Station R&D Innovative Energy Carriers R&D Materials Compatibility R&D Integration with Energy Technologies R&D

# FY17 & FY18 Technology Acceleration and Systems Analysis Accomplishments

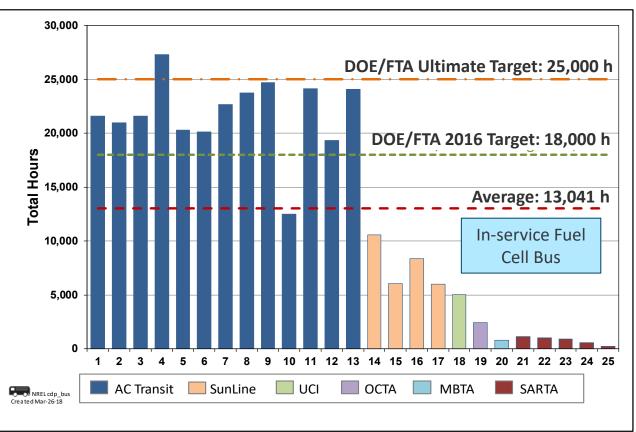
### Hydrogen Safety is a Priority

|             | Analysis &<br>Validation   | Completed near-field cryogenic<br>hydrogen dispersion analysis and<br>modeling validation                                       | 90 -                           |
|-------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| A           | Risk<br>Assessment         | Initiated expansion of HyRAM to include flexibility for broader application to new and emerging hydrogen applications           | 70 - 60 -                      |
|             | Fuel Quality<br>Assurance  | Initiated fuel testing of in-line hydrogen<br>contaminate detector with improved<br>baseline stability                          | 50 - 40 -                      |
|             | Enabling<br>Infrastructure | Published report on tunnel safety analysis<br>including risk analysis and CFD modeling to<br>support access decisions for FCEVs | 30 –<br>-20 0<br><i>r</i> (mm) |
| <b>I</b> SI | Partnership                | Initiated partnership with AiCHE to<br>enable broader access to Hydrogen<br>Safety Panel and training resources                 | Tgas (°C)                      |

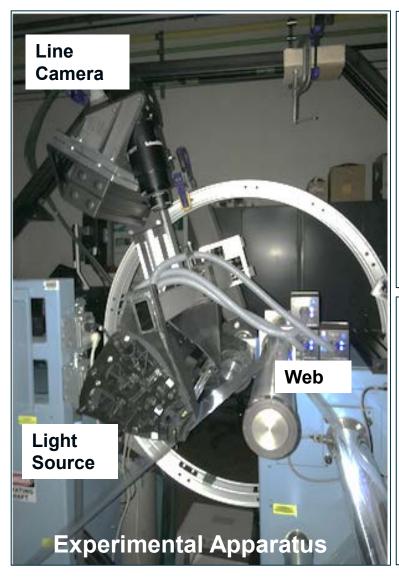
# Low cost, low power, durable, and reliable H<sub>2</sub> safety sensor for vehicle and infrastructure applications.



- CFD modelling and empirical verification of indoor hydrogen releases
- Empirical verification using the NREL HyWAM
- Good agreement between model and measurement Independent CFD verification ongoing


- Collaboration with DOT NHTSA in support of Global Technical Regulation (GTR)
- Developed FCEV Exhaust Analyzer for verification of GTR-13 requirements
- Performance verified in the laboratory and vehicle; Field tested on FCEV; detected hydrogen successfully

### **Exceeded DOE-DOT Fuel Cell Bus Durability Target**


Top fuel cell bus runs >27,330 hours, surpassing DOE/DOT ultimate target

12 fuel cell buses have more than 19,000 hours

### Total Hours Accumulated On Each Fuel Cell Bus as of 2/28/18



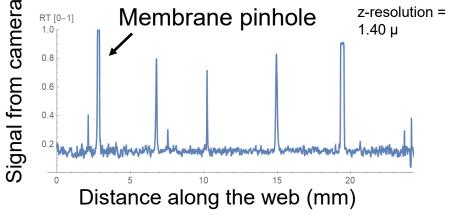
### Advances in QC Technique R&D for MEA Manufacturing of Rolled Goods



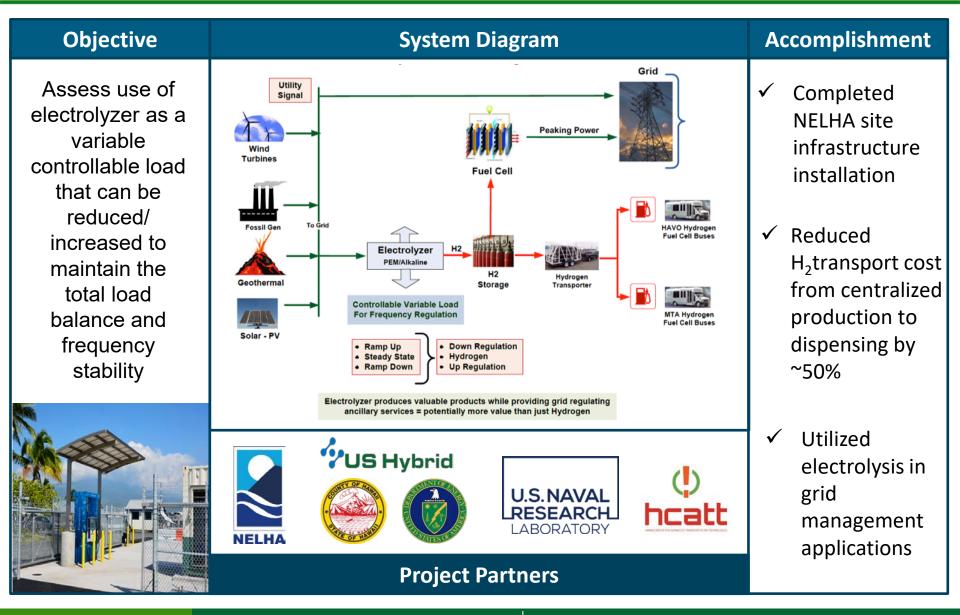
#### **Objective:**

High resolution characterization of Gore-Select membrane roll quality

#### **Accomplishment:**


- Developed optical inspection (transmission/reflection) apparatus and classification algorithms for automated defect detection
- Optically scanned full-width, full-length production rolls at high resolution and provided full-roll metrics

#### Plans:


Scan additional production rolls

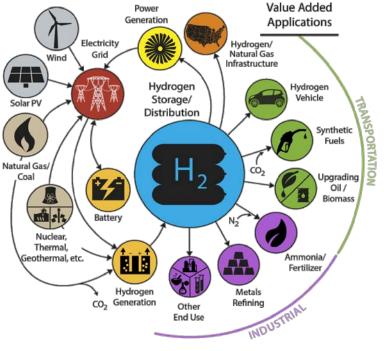


#### **Experimental Data from Optical Scan** z-resolution = Membrane pinhole RT [0–1] 1.0 <sub>Γ</sub> 1.40 µ 0.8 06



### Hydrogen Energy Systems as a Grid Management Tool Project




# H2@Scale Analysis



In-Depth Analysis (FY17)

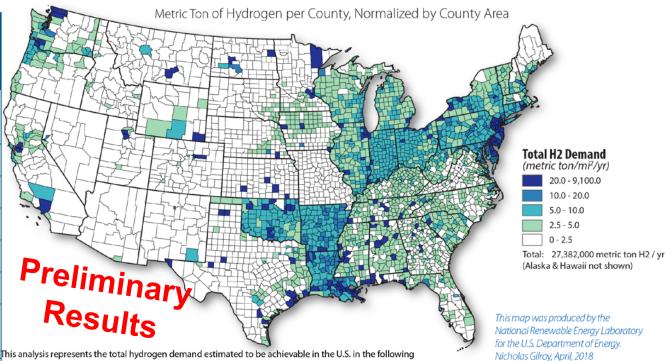


- Identify potential demand
- Examine supply resources
- Identify impact potential
- Identify infrastructure issues
- Evaluated H<sub>2</sub> price requirements
- Identified supply options and costs
- Examined 3 scenarios
- Performed stage-gate review
- Evaluated regional scenarios
- Examined economic inertia and externalities
- Performed spatial analysis



\*Illustrative example, not comprehensive Source: NREL

Idaho National Laboratory






OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | FUEL CELL TECHNOLOGIES OFFICE

### H2@Scale Analysis: Estimated Technical Potential Hydrogen Demand

| Demand                        | Technical<br>potential (MMT*<br>/ year) | Metric Ton of Hyd                                                                                                                                                                           |
|-------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refineries & CPI <sup>§</sup> | 8                                       |                                                                                                                                                                                             |
| Metals                        | 6                                       |                                                                                                                                                                                             |
| Ammonia                       | 5                                       |                                                                                                                                                                                             |
| Methanol                      | 1                                       |                                                                                                                                                                                             |
| Biofuels                      | 1                                       | Drott                                                                                                                                                                                       |
| Natural Gas                   | 7                                       | Preliminary                                                                                                                                                                                 |
| Light Duty<br>Vehicles        | 28                                      | Results                                                                                                                                                                                     |
| Other<br>Transport            | 3                                       | sectors: refineries, biofuels, ammonia, metals, methanol, natur<br>industrial sector was summarized by county to identify the tot<br>then normalized by area.<br>Data Source: NREL analysis |
| Electricity<br>Storage        | 28                                      | Technical Pote                                                                                                                                                                              |
| Total                         | 87                                      | Current L                                                                                                                                                                                   |



d to be achievable in the U.S. in the following ral gas systems, and seasonal energy storage. Each tal hydrogen demand for the industrial sector and

### ential Demand: 87 MMT/yr

### U.S. market: ≈ 13 MMT/yr Including captive generation for ammonia and refining

\* MMT: Million metric tonnes

<sup>§</sup> CPI: Chemical Processing Industry not including metals, ammonia, methanol, or biofuels

Light duty vehicle calculation basis: 190,000,000 light-duty FCEVs from http://www.nap.edu/catalog/18264/transitions-to-alternative-vehicles-andfuels

# **Technology Acceleration Team**



Fred Joseck Technology Acceleration Manager Fred.Joseck@ee.doe.gov



Neha Rustagi Hydrogen Delivery Technology Manager

Neha.Rustagi@EE.Doe.Gov



Peter Devlin Market Transformation Project Manager Peter.devlin@ee.doe.gov



Jason Marcinkoski Tech. Validation Project Manager

Jason.marcinkoski@ee.doe.gov



Dr. Laura Hill Safety, Codes & Standards Project Manager

Laura.hill@ee.doe.gov



Dr. Chris LaFleur Safety, Codes & Standards Project Manager

Chris.lafleur@ee.doe.gov



Dr. Nacole King ORISE Postdoctoral Fellow

Nacole.king@ee.doe.gov



Vanessa Trejos Support Contractor

Vanessa.trejos@ee.doe.gov



Dr. Nancy Garland

Manufacturing Project Manager

Nancy.garland@ee.doe.gov

Shawna McQueen Project Manager

Shawna.mcgueen@ee.doe.gov



Dr. Shuk Han Chan **ORISE** Postdoctoral Fellow

Shukhan.chan@ee.doe.gov



Salil Deshpande Support Contractor

Salil.deshpande@ee.doe.gov

# **Panel Discussion**

### Can you expand on the activities you have in collaboration with nuclear energy?

| Thermal & Electrical Energy from Nuclear Plants for H <sub>2</sub> Production                                                                                                                                                                                                                                                                                                                                                                                                 | INL Integrated Energy System Lab                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <list-item><list-item><ul> <li>Balance renewable energy on the grid</li> <li>Better utilize clean baseload generation assets         <ul> <li>Low electricity rates</li> <li>Increased renewable energy</li> <li>Historically low natural gas prices</li> </ul> </li> <li>Increase utilization of renewable energy         <ul> <li>Nuclear can go beyond the grid</li> <li>Hydrogen is essential feedstock to many industries</li> </ul> </li> </ul></list-item></list-item> | <ul> <li>100 kW (thermal) nuclear reactor emulator</li> <li>250 kW high-temp electrolyzer test bed</li> <li>Real time grid simulator</li> <li>Prove reactor thermal stability to license operation <ul> <li>Normal (open/close valves, weather, varying loads</li> <li>Abnormal (weather storms/ events, failures)</li> </ul> </li> <li>Fuel synthesis skid</li> <li>25 kW high temp. electrolysis stack module test station</li> </ul> |
| NL. High Temps<br>Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03/21/2018 15:57                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### How is FCTO R&D addressing the role hydrogen can play in grid resiliency?



FUEL CELLS as primary or backup power

- NREL's Data Center
- Backup cell phone towers
- Energy Dispatch Controller optimizes DG fuel cells with building loads and grid

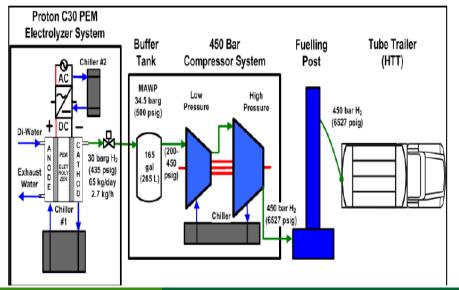


ELECTROLYZERS as a controllable load

- Sub-second response time (NREL)
- Sufficient demand analysis (LNBL)
- Real-time grid simulator (INL)
- Electrolysis test bed (NREL)
- Real-world scenarios tested through intra-lab connection between INL/NREL



HYDROGEN as a generation feedstock


- Power to gas concept
- Hydrogen pipelines & large scale energy storage

#### What activities have you funded to guide the R&D of hydrogen fueling stations?

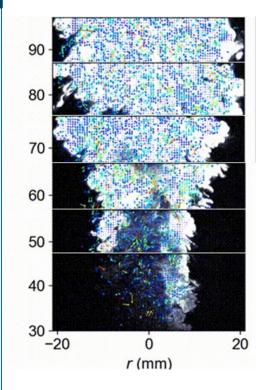


#### Fuel Cell Delivery Truck R&D

- Collaboration Industry, FedEx and Plug Power providing a H<sub>2</sub> solution for sector
- System Integration R&D 2x 10kW FC stacks, tanks (11.9 kg), fuel lines, refueling procedures complying with NFPA 52 Standards, refueling procedures



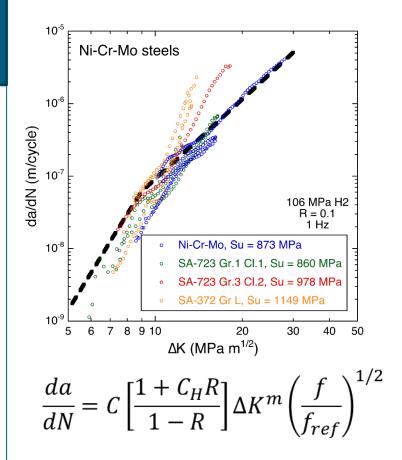
#### **NELHA H<sub>2</sub> Fueling Station**


 Performance - Improve cascade fill utilization from 50% to 90% by developing a new boost compressor fueling post.

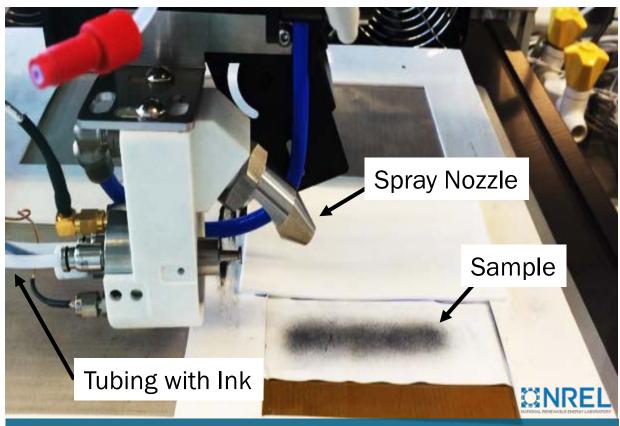


# What work has FCTO funded to enable stations to be sited in urban locations, where land is a constraint?

#### Science-based analysis of the risk of hydrogen releases to enable reductions in station footprint


- Developed unique capabilities to experimentally characterize cryogenic hydrogen releases at temperatures never before achieved at the lab scale.
- Completed the first ever nearfield measurement and validation of plume concentration and extent, ignitability and heat flux values, and velocity of cryogenic plumes at 50K
- Will enable code committees to modify the separation distances on the basis of risk that has been scientifically characterized




Can you describe how early-stage R&D has been used to improve the reliability of fueling station components?

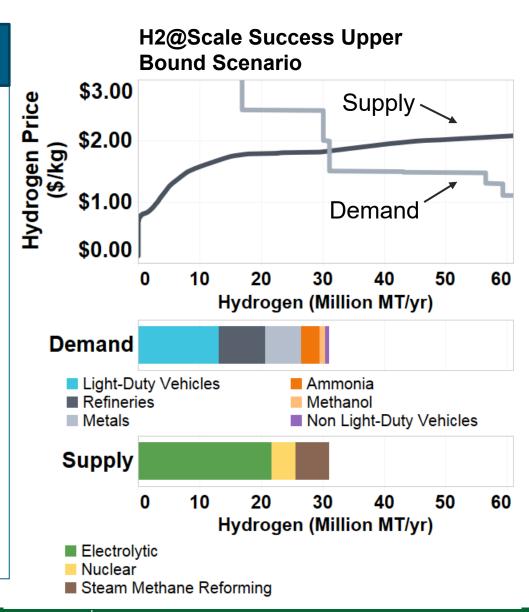
Developed a universal fatigue crack growth curve was developed to capture the general behavior of pressure vessel steels

- Represents a family of curves that depend on the load ratio of minimum to maximum pressure in the vessel
- Proposed to the ASME pressure vessel committee, which is incorporating it into a code case
- Will allow pressure vessels to be designed to conform to these curves in lieu of performing actual tests, which will reduce the cost and time required significantly



Can you give an example of a DOE accomplishment this year in reducing the costs of fuel cell and electrolyzer technologies?




Sprayer To Coat Catalyst Ink On Membranes for Fuel Cells and Electrolyzer

- A fuel cell OEM, has an automated fuel cell assembly line but a limited capacity to manufacture membrane electrode assemblies.
- NREL and OEM set up a CRADA to reduce cost and improve performance of fuel cell products
- NREL reduced the time to spray a catalyst-coated membrane by 100x without loss in performance.

### Can you explain the approach for the techno-economic analysis of H2@Scale?

### Developed hydrogen supply and demand scenarios with national labs and stakeholders

- Hydrogen supply growth developed using the ReEDS grid interaction model with natural gas prices and curtailed resources of wind, solar and nuclear energy. (NREL)
- Hydrogen demand growth assessed (ANL)
  - Growth in FCEVs
  - Future gasoline and diesel demand
  - Ammonia production
  - Synthetic fuel growth
- Assessed the hydrogen supply from nuclear generation assets in conjunction with the Office of Nuclear Energy. (INL)

