

membranes based on poly(aryl piperidinium)

Highly conductive, stable and robust hydroxide exchange arpg.e Award: DE-AR0000771 Yushan Yan (PI), Bingjun Xu, Shimshon Gottesfeld, University of Delaware, Shuang Gu, Wichita State University, Bamdad Bahar, Xergy, and Hui Xu, Giner

Poly(aryl piperidinium) HEM vs. Commercially Available HEMs

		W7Energy	Dioxide Materials	Tokuyam a	Fumatech	
Product Name	Units	Piperion TP-85	Sustanion X37	A201	FAS-50	FAA-3
Thickness	μm	20	50	28	45 - 55	45-50
Ion exchange capacity	meq g ⁻¹	2.2		1.7	1.6 - 2.0	2.02
Counter ion		CO ₃ ²⁻	Cl-	OH-	Br	Br
Conductivity (25°C)	mS cm ⁻¹ (wet OH ⁻)	80	70	46	3 - 8 (Cl-)	25
Water uptake	wt%	60	90	44	10 - 25	40
Dimensional swelling (in-plane)	% (linear)	8	6	2	0 - 1	17
Ultimate tensile strength (50°C and 50%RH)	MPa	50			30 -40	
Elongation at break	%	175	10-40 (wet)		15 - 60	
Young Modulus	MPa	425	20 (wet)		1000-1800	
Recommended Temperature	°C	< 120		< 60		
Recommended pH		0-14	2-14	0-14	0-11	0-11

Yushan Yan yanys@udel.edu (302) 831-2552

Scaling Up

Produced 1Kg of PAP-TP-85 and are testing it for multiple applications. Produced tenths of square meters of roll-to-roll self supporting and reinforced membranes

> Non-reinforced membrane with conductivity, superior ion thermal and chemical stability outstanding mechanical and properties

Ionomer with adequate shelf life conductive ion and properties on par with the membrane

Contact Information

Santiago Rojas-Carbonell src@udel.edu (505) 814-8369