

Award No. DE-AR0000805

Direct Ammonia Fuel Cells (DAFCs) for Transport Applications Shimshon Gottesfeld¹, Yushan Yan¹, Jia Wang², Radoslav Adzic², Chulsung Bae³, Bamdad Bahar⁴ 1. University of Delaware | 2. Brookhaven National Laboratory | 3. Rensselaer Polytechnic Institute | 4. Xergy Inc.

:	Fuel Tank:			
h/kg	One fuel tar	nk out of	the	
h/kg	two in the H ₂ -fueled FCEV			
	may not be	required i	in a	
be	NH ₃ -fueled	FCEV	to	
	secure range (-60 L)			

Property	Value	
Thickness	25 µm	
Water uptake (r.t.)	24%	
Swelling degree (X) (r.t.)	2%	
Swelling degree (Y) (r.t.)	5%	
Resistance ASR (80 °C, 100% RH)	$0.12 \ \Omega \cdot cm^2$	

Record DAFC Performance in the REFUEL Program

- cell performance reported to date.
- further development).
- The main remaining challenges are:

Early Market Applications: DAFCs Can Provide a Simple & Compact Power Source for Drones

Weight and volume of 2 kW / 8 kWh drone power system

Drone Power

Filled Tank Fully Charged Batter System Weigl System Volun Tank pressure Refill /Rech

fuel.

Operating near 100 °C with thin HEMs and optimized catalysts enabled demonstration under the ARPA-E Program of highest direct ammonia fuel

Presently demonstrated 400 mW/cm² of cell active area will enable volumetric peak power density near 0.8 kW/L allowing effective packaging in a passenger vehicle (higher power densities likely to be achieved upon

• Lower PGM catalyst loading to lower DAFC cost

Minimize fuel losses

• Fuel cell (FC) systems have higher energy density than the demonstrated batteries. However, gaseous fuel storage at ultra-high pressure is a challenge. • Ammonia can be fed directly to a DAFC operating near 100°C.

System	Rechargeable	Hydrogen FC Power System	Our DAFC Power System	
	Dattery	I Ower System	I Ower System	
k or	40		56	
y Weight (kg)	40		3.0	
ht (kg)	40	16.3	11.4	
me (L)	20	37.9 (300 bar)	15.8	
e (bar)	N/A	200 - 700	10	
narge	Lengthy	Challenging	Simple	

Conclusions

With ammonia recognized recently as the fuel to be widely made from renewable energy resources, the DAFC developed in the REFUEL program can become the preferred type of power source when using this alternative