## Advanced Alkaline Membrane H<sub>2</sub>/Air Fuel Cell System with Novel Technique for Air CO<sub>2</sub> Removal Brian P. Setzler, Lin Shi, Stephanie Matz, Catherine Weiss, Santiago Rojas-Carbonell, Teng Wang, Yun Zhao,

Yushan Yan (co-PI), and Shimshon Gottesfeld (PI) Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716

## Project Vision

A proof-of-concept for automotive hydroxide exchange membrane fuel cell (HEMFC) systems, enabled by a novel electrochemical CO<sub>2</sub> pump (ECP) for CO<sub>2</sub> mitigation.

End of project deliverable, 1 kW system meeting:

| Descriptor           | Quantitative Target                       |
|----------------------|-------------------------------------------|
| Ambient Air          | 400 ppm CO <sub>2</sub>                   |
| Low PGM stack        | ≤0.125 mg <sub>PGM</sub> cm <sup>-2</sup> |
| High performance     | 0.65 V @ 1.5 A cm <sup>-2</sup>           |
| <b>Durable stack</b> | 400 h @ 80 °C<br>(≤10% loss)              |
| Compact              | ECP : FC volume ≤0.3 : 1                  |
| Efficient            | ≤2% system H <sub>2</sub> to ECP          |
| Low Cost             | ≤\$2 kW <sup>-1</sup> for ECP             |



Key electrochemical CO<sub>2</sub> pump (ECP) attributes

- **Continuous** no sorption or regeneration
- **Electrochemically pumped** –concentrates sub-ppm to %
- **Compact** optimized for  $CO_2$  mass transport,
- **Efficient** Powered by  $\leq 2\%$  of system H<sub>2</sub> in anode purge
- **Low Cost** Low-cost ECP MEA and module architectures

## - CO<sub>2</sub> effect in HEMFCs





# ERSITYOF

