Cost-effective, Intermediate-temperature

Fuel Cells for Carbon-free Power Generation

Project ID: ARPAE-15

PI: Greg G. Tao

Chemtronergy, LLC. 3619 W 1987 S, Salt Lake City, UT 84104

2019 DOE Hydrogen and Fuel Cells Program Annual Merit Review

April 30, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: November 2017
- End: August 2019
- Percent complete: 80%

Budget

- Total Project Value
 - ARPA-E \$1,100,000
 - Cost-share \$ 122,222
- Funding received in FY18
 - \$ 510,000
- Funding for FY19
 - \$450,000

Barriers

Fuel Cells

- A Durability
 - Longer operation
 - Lower degradation
- B Cost

Manufacturing

- F High cost and complexity of processing
- I Lack of standardized BOP components

Partners

- University of Maryland
- TechOpp Consulting Inc.

Relevance

Objective: develop and demonstrate a transformational technology that costeffectively and efficiently converts the chemical energy of ammonia fuel directly into electricity at a reduced temperature (≤650°C) through the design and manufacturing of an advanced IT-SOFC with unique hierarchical structures

Targets

Metric	State of the Art	Proposed
Delivered SUE Cost	>\$0.3 /kWh	~ \$0.3/kWh
Max operating temperature	800~900°C	≤ 650°C
Current density at 0.75V	0.4 A/cm ²	0.3 A/cm ²
Electrical efficiency	52~60%	> 55%
Cell degradation rate	>1%/1kh	<0.3%/1kh

Approaches

- Catalysts & implementation process development
- Strategies for performance enhancement
- Advanced manufacturing process development

Materials Development

- \circ NH₃ catalyst nano metal oxides
- Cathode catalysts

Cell Fabrication Process Development

- Cathode deposition optimization
- Anode fabrication process development
- O Scale-up

IT-SOFC Experimental Evaluation

- \circ Button sized cells (2 cm²/cell)
- \circ Single cells (100 cm²/cell)

Technology-to-Market (T2M)

- Techno-economic analysis (TEA)
- T2M development

Schedule

21-month Project (11/2017 – 08/2019)

• Concept development phase (12-month) focusing on materials development & evaluation, advanced process development, and T2M plan development

• Scale-up phase (9-month) focusing on scaling up & large-cell evaluation for proof-of-conception (PoC) demonstration, and T2M plan updating

Concept phase (12-month):

Critical cell components development, cathode, catalysts, anode fabrication processing, small cell fabrication, T2M plan initialization

Development Phase (9-month):

Cell materials integration, large cell fabrication (100 cm²/cell), single cell construction, & evaluation, T2M updating

Challenges for Direct NH₃ Fueled SOFCs

Freshly reduced anode

After exposure to NH₃ fuel at 650°C

Pristine Ni mesh

After hundreds hours test under NH₃ environment at 650°C

Technical Accomplishments – NH₃ Cat.

- Evaluated eight NH₃ catalyst candidates
- Standard Ni+YSZ doesn't possess sufficient catalytic effects on NH₃ decomposition at T \leq 700°C
- A few catalysts showed near complete NH_3 conversion (100%) ≤ 50 sccm (7137 h⁻¹)

NH₃ Catalyst Stability Evaluation

chemtronergy

- Measurement of ohmic ASR changes under NH₃ environment by 4-point method
- Three samples:
 - blank substrate (anode support);
 - 2. w/ Cat-2
 - 3. w/ Cat-6
- Pt meshes for current collection
- 650°C
- NH₃ flow rate @ 20 sccm (2854 h⁻¹)
- Stability: Cat-6 >> Cat-2
 >> anode base substrate

Electrolyte Optimization

3rd Gen Button Cell Performance

Button cell baseline performance with H_2 at various temperatures (800°C – 650°C)

Button cell performance comparison between H_2 and NH_3 at 650°C

T, °C	OCV, V		Power density @		Peak power density,		ASR, Ωcm ²	
			0.75V, W/cm ²		W/cm ²			
	${\rm H_2}^*$	NH ₃	H ₂	NH ₃	H ₂	NH ₃	H_2	NH ₃
650	1.188	1.122	0.377	0.308	0.475	0.403	0.637	0.73
700	1.183		0.692		0.891		0.333	
750	1.176		1.108		1.433		0.196	
800	1.167		1.514		1.913		0.147	

Button Cell Stability Test – NH₃@650°C

Scale-up Cell Performance w/ NH₃ Fuel

VI sweep characteristics of a single cell ($100 \text{cm}^2/\text{cell}$) tested with NH₃ from 800°C to 650°C

Single Cell Long-Term Test Results

Long-term test results of a single cell at 650°C with NH₃ (200 hrs) and 60%H₂-N₂ (500 hrs)

Proposed Future Work

By Q3 FY2019

Any proposed future work is subject to change based on funding levels

- Complete long-term tests of single cells (100 cm²/cell) directly fed with ammonia fuel at 650°C, demonstrating the degradation rate < 0.3%/1khr over 500 hours @ 0.225 W/cm² @ 0.75V
- Update T2M
- Complete TEA

Beyond 2019

Look for partners who can help transitioning the advanced laboratory technologies into marketable products

- Scale-up demonstration at a kW stack scale
- System integration and demonstration at a kW level
- Investors (private & government)

Summary – Documented Progress toward Targets

- Successfully developed and implemented an ammonia catalyst system for preserving SOFC electrode functionality and mechanical integrity
- Improved manufacturing processes for SOFCs performance enhancement and suitable for cell scaling up
- Completed technical milestones on schedule

