

Novel Structured Metal Bipolar Plates for Low Cost Manufacturing

PI: Conghua "CH" Wang

TreadStone Technologies, Inc.

April 29, 2019

Project ID# : FC105

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

- Project start date: Jan. 15, 2017
- Project end date: Jan. 31, 2019
- Percent complete: 100%

Budget

- Total Funding in 2018: \$100,000
- Total Project Value: \$537,500
- Cost Share Percentage: 20%

Barriers

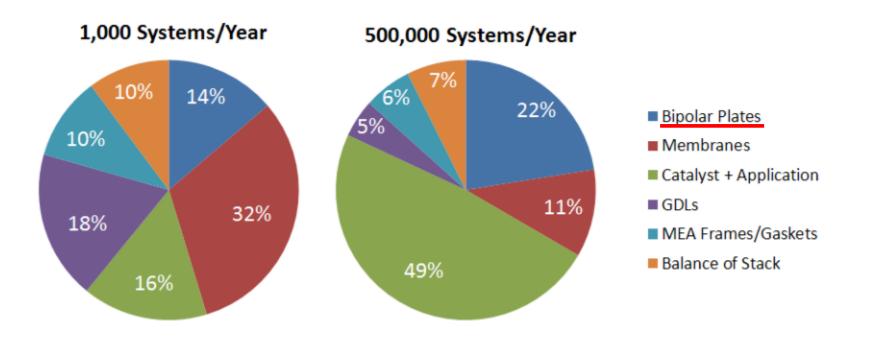
- Barriers Addressed : Bipolar Plate Durability and cost
 - ➢ Cost: < \$3/kW (2020)</p>
 - \blacktriangleright resistivity < 10 m Ω ·cm²
 - \blacktriangleright corrosion < 1 x10⁻⁶A/cm²

Supporting Partner

- Strategic Analysis, Inc.
- Hawaii Natural Energy Institute, University of Hawaii.

Objective of the Project

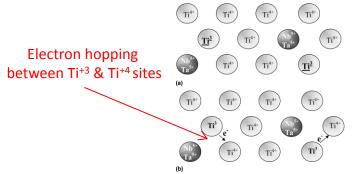
- <u>Overall Objective</u>: Develop lower cost metal bipolar plates to meet performance target and 2020 cost target (<\$3/kW)
 - Develop large scale manufacturing process for the doped titanium oxide coating technology demonstrated in previous SBIR project.
 - Investigate the relationship between processing conditions and doped titanium oxide properties for production quality control system development.


Key Technical Targets

Characteristic	Unit	2011 Status	2017 Targets	2020 Targets
Cost	\$ /kW	5-10	3	3
Corrosion	μ <mark>A/c</mark> m²	<1	<1	<1
Resistivity	$\Omega.cm^2$	< 0.03	<0.02	<0.01

Relevance

Bipolar Plate Cost is a Major Portion of Stack Cost




J. Spendelow, J. Marcinkoski, "Fuel Cell System Cost – 2013" DOE Fuel Cell Technology Office Record # 13012

Approach: Coating Material for SS Plates --- Semiconductive Doped TiO_x

Doping TiO_2 with +5 valence elements enforce the formation of Ti^{+3} in TiO_2 lattice structure, and result in the higher electronic conductivities.

A. Trenczek-Zajac, M. Rekas, Materials Science-Poland, Vol. 24, No. 1, 2006

2. The week bonding of doped TiO_x to metal substrate surface.

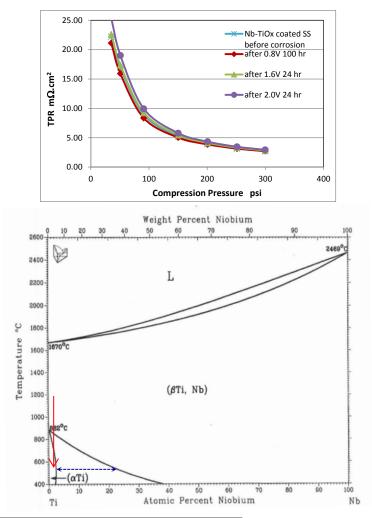
1.

TreadStone's approach:

Challenges to use doped TiO, coating:

conductivity is not high enough.

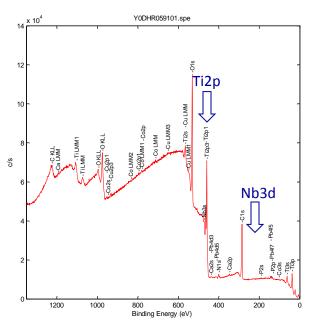
Doped TiO, is semi-conductive. The electrical


- Coat stainless steel substrate with Ti-Nb or Ti-Ta alloy. Then, grow the doped TiO_x surface layer on the Ti alloy coating layer.
- 1. The doped TiO_x on Ti alloy surface is thin and reliable.
- Ti alloy coating has excellent adhesion on metal substrate (stainless steel or aluminum).

Achievements and Challenges

--- from previous SBIR project

- Low contact resistance and superior corrosion resistance have been demonstrated using the doped TiO_x coating on SS substrate for PEM fuel cell applications.
- Challenges:
 - Processing technology has to be optimized to obtain the desired structure of surface oxide layer.
 - Segregation of Nb or Ta alloy element from the coating surface leads to the pure Ti surface oxide layer of the sputtering coated surface.
 - Need to determine the optimized coating composition.
 - Understand the relationship of the processing condition with the surface oxide layer structure.


The objective of this project is to develop technical solutions to overcome these challenges..

PVD Process Condition Optimization

--- Minimizing Surface Layer Alloy Element Segregation

• Previous Processing Condition

XPS survey spectrum of as-coated Ti3Nb on SS.

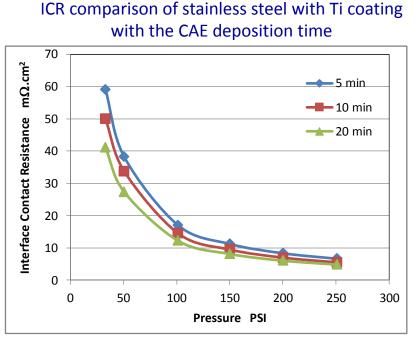
No Nb (or Ta using Ti-Ta alloy target) was detected on the coating surface

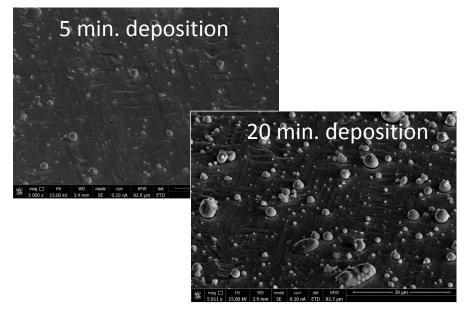
Modified Processing Condition

1.6E+06 HNO3 Washed 1.4E+06 1.2E+06 As Sputtered 1.0E+06 8.0E+05 Nb 6.0E+05 4.0E+05 2.0E+05 0.0E+00 1000 800 600 400 200 0 Binding Energy (eV)

XPS spectra of Ti-Nb-Ce alloy on SS.

- Adding Ce into the target can retain the Nb in the surface layer of the coating.
- Ce can be removed by acid washing.


The modified processing condition has brought Nb to the surface.


Coating Process Development

- Recent focus is on cathodic arc evaporation (CAE) process development.
 - More reliable to keep Nb (Ta) in the coating surface layer.
 - Exceptional adhesion of the coating layer on substrate surface.

The focus is to reduce the processing time of the coating process.

SEM pictures of SS with Ti coating deposited by CAE.

with ~ 15nm TiO₂ on the surface

DOE's targets: < 10 m Ω .cm²

Future Work

- Large scale manufacture process development.
 - Compare various deposition technologies to select the low coat, large volume production method.
- The mechanism study of the low contact resistance doped TiO_x surface oxide with fuel cell GDL.
 - Using advance surface characterization technologies to study the mechanism of the low electrical contact resistance of the doped TiO_x coating and determine the criteria for large scale production quality control and inspection.
- Durability Evaluation
 - Conduct *in-situ* cell/stack durability tests of the doped TiO_x coating for PEM fuel cell applications.

Summary

• <u>Objective:</u>

- Develop low cost fabrication process of the doped TiO_x coating for PEM fuel cell applications.
- Investigate the relationship of the properties of the doped TiO_x surface layer with processing condition and its durability in PEM fuel cell operation environment.
- *Relevance:* Reducing the metal bipolar plate cost to meet FY20 requirements.
- **Approach:** Using doped TiO_x coating on metal plates surface for fuel cell applications.
- <u>Accomplishment:</u>
 - Identified processing factors for the coating layer surface composition control.
 - Developed a low cost method for coating composition optimization.
- Future Work:
 - Detailed development of the PVD process for the optimized coating properties.
 - Investigation the relation of the surface oxide layer properties with processing conditions and its durability.
 - Conduct *ex-situ* and *in-situ* tests to demonstrate the performance of the coating processed with low cost fabrication process.

Acknowledgements

- DOE EERE Fuel Cell Team.
- DOE SBIR Program.
- Supporting Partners.
 - Manufacture cost analysis: Strategic Analysis, Inc.
 - *in-situ* durability test: HNEI, U. Hawaii

