

Argonne NATIONAL LABORATORY 2019 DOE Hydrogen and Fuel Cells Program Review

Tailored High Performance Low-PGM Alloy Cathode Catalysts

Pls: Vojislav R. Stamenkovic Nenad M. Markovic

Materials Science Division

Argonne National Laboratory

Project ID# FC140

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project start: 10/2015
- Project end: 10/2019

Budget

- Total Project funding \$4.0M
- Funding for FY19: \$700K

Barriers to be addressed

- 1) Durability of fuel cell stack (<40% activity loss)
- 2) Cost (total loading of PGM 0.125 mg_{PGM} / cm²)

3) Performance (mass activity @ 0.9V 0.44 A/mg_{Pt})

Partners:

- Argonne National Laboratory MERF CSE Greg Krumdick, Debbie Myers
- Oak Ridge National Laboratory Karren More
- National Renewable Energy Laboratory Kenneth Neyerlin

Project Lead:

• Argonne National Laboratory - MSD - V.Stamenkovic / N.Markovic

Relevance

<u>Objectives</u> The main focus of ongoing DOE Hydrogen & Fuel Cell Program is development of highly-efficient and durable Pt-Alloy *catalysts* for the ORR *with low-Pt content*

Table 3.4.13 Technical Targets: Electrocatalysts for Transportation Applications ^h					
Characteristic	Units	2011 Status	2020 Targets		
Platinum group metal total content (both electrodes) ^a	g / kW (rated)	0.19 ^b	0.125		
Platinum group metal (pgm) total loading ^a	mg PGM / cm ² electrode area	0.15 ^b	0.125		
Loss in initial catalytic activity ^c	% mass activity loss	48 ^b	<40		
Electro catalyst support stability ^d	% mass activity loss	<10 ^b	<10		
Mass activity ^e	A / mg Pt @ 900 mV _{iR-free}	0.24 ^b	0.44		
Non-Pt catalyst activity per volume of supported catalyst ^{e, f}	A / cm ³ @ 800 mV _{IR-free}	60 (measured at 0.8 V) ⁹ 165 (extrapolated from >0.85 V) ⁹	300		

Source: Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan

ANL Technical Targets

- Total PGM loading 2020 DOE target 0.125 mg_{PGM}/cm²
- Loss in initial mass activity 2020 DOE target <40%
- Mass activity @ 0.9V_{iR-free}
 2020 DOE target 0.44 A/mg_{Pt}

Approach

Materials-by-design approach - to design, characterize, understand, synthesize/fabricate, test and develop tailored high performance low platinum-alloy nanoscale catalysts

- Addition of the elements that hinder Pt dissolution

Argonne

Prevent loss of TM atoms without activity decrease

Approach

Project Management

- Task 1 Electrochemical Characterization (EC) Task 2 - Durability Management (DM
- Task 3 Synthesis of Nanomaterials (SN)

- From fundamentals to real-world materials
- Simultaneous effort in three Tasks

- Go-No Go evaluation
- Progress measures are quarterly evaluated

Task 1 Introduction: RDE-ICP/MS of Pt/C Nanoparticles

Surface Structure	Pt(111)	Pt(100)	Pt(110)	Pt-poly
Dissolved Pt per cycle [µML]	2	7	83	36
Detecti	on Limit:	0.8 μMI	_ of Pt	

Monodisperse 20% Pt/C NPs 3 and 5nm

In-Situ RDE-ICP/MS

Correlation between Surface Structure - Activity – Dissolution

2.7+/-0.5 nm

5.1 +/- 0.5nm

Task 1 Introduction: RDE-ICP/MS of Pt/C Nanoparticles

Task 1 Accomplishments and Progress: RDE-ICP/MS of Pt/C Nanoparticles

Dissolution Rates Dependency

(in addition to applied electrode potential)

1) Particle Size:

Smaller particles have higher dissolution rates due to surface atoms with low coordination

2) Metal Loading:

Higher loading of metallic NPs onto carbon support leads to higher dissolution rates

3) Support:

Dissolved Pt atoms can be redeposited in high surface area carbon support

4) Electrolyte:

Dissolved amount Pt of atoms varies with electrolyte and presence of different anions

Task 1 Accomplishments and Progress: EC-ICP-MS PtAu Thin Films

Task 1 Accomplishments and Progress: *EC-ICP-MS* PtAu Thin Films

Different arrangements between Pt and Au have been tested for dissolution rates that has been normalized for the actual Hupd from Pt surface atoms

Au/Pt4ML and Pt-Au alloys have comparable beneficial properties

Task 2 Introduction: Pt₃Au synthesis and characterization

in collaboration with K.L. More, ORNL

Task 1-2 Accomplishments and Progress: EC-ICP-MS Pt₃Au nanoparticles

Task 2 Accomplishments and Progress: Pt₃Au/C 3nm vs Pt/C 3 and 5 nm

PtAu 3nm have been synthesized with the same success as bigger 5nm NPs, which was confirmed by TEM studies and electrochemical evaluations of dissolution rates with over one order of magnitude improvement

Task 3Accomplishments and Progress:

Scaled PtAu > 5nm in 50 cm² MEA

in collaboration with Kenneth Neyerlin, NREL

- 150 kPa, 100% RH, 80°C H₂/O₂, 50 cm², N211
- Ultrasonic spray coated 0.9 I:C (D2020 ionomer)
- Cathode loading 0.075 mgPt/cm2
 Developed PtAu/HSC: im^{0.9V} ~ 420 mA/mg_{Pt}
- 150 kPa, 100% RH, 80°C H₂/Air, 50 cm²

PtAu/C losses only 17% of ECSA and 23% of MA after 30K cycles of AST - FCPAD protocol meeting the DOE target

	ECSA (m2/g)
Before AST	31.8
After AST	26.3

Task 3 Introduction:

Process R&D and Scale Up

collab. with Greg Krumdick, ANL -MERF

New Material		Timeline & Milestones		
Material Performance Evaluation	Research Chemistry	M 1-2	 Hot-injection was avoid using one-pot synthesis. Benzyl ether as solvent. No Go 	
Go No Go Research Chemistry		M 3	 3) Phenyl ether as solvent. 4) Best synthesis condition was established. 5) Reproducibility was confirmed. Go 	
Select New Material Proof of Concept	1 st stage scale up	M 4	 6) 1st stage scale up (1 g / batch) was successful. 7) New method to load PtNi nanoparticles on carbon and its separation from solvent was developed. 	
Material Specification Material Process Validation Material Performance Validation	st Stage of Scale-up and Process Validation Naterial Performance Validation		 8) Reproducibility of 1st stage scale up was confirmed. 9) Pre-annealing process applied. 	
Go No Go		M 6-7	10) Acid leaching process was modified. Go	
2nd Stage of Scale-up Material Performance	2 nd stage scale up	M 8-9	 11) The 2nd stage scale up (5 g / batch) was successful. 12) Acid leaching process was established. 	
Go No Go	Go No Go M 10		13) The 2 nd stage scale up is reproducible . Go	
Technology Transfer Package		M 11- 12	14) MEA performance; New IP application ; Sample send out; Manuscript submitted.	

Task 2-3 Selected Nanostructures: *Pt-Alloys, Solid, Porous and Hollow Structures*

in collaboration with Karren More, ORNL

16

Tasks 3 Accomplishments and Progress: *PtNi NanoFrames*

~ 1g

As synthesized

Pt-Ni h-NFs

Acid treated

Pt-Ni e-NFs

- NF structures synthesized at ~1g batch scale
- High temperature annealing preserves hollow structure
- Durable after harsh acid treatment $(0.5 \text{ M H}_2\text{SO}_4, 80^\circ\text{C})$ before MEA

Tasks 2-3 Accomplishments and Progress: PtNi NanoFrames 1g batch in 50 cm² MEA

in collaboration with Kenneth Neyerlin, NREL

- 150 kPa, 100% RH, 80°C H₂/O₂, 50 cm², N211
- Ultrasonic spray 0.5 I:C (D2020 ionomer)
- Cathode loading 0.055mgPt/cm2

Developed PtNi NanoFrames/Vulcan: i_m^{0.9V} ~ 330 mA/mg_{Pt} vs. ~200 mA/mg_{Pt} for 30 wt% Pt/Vulcan

Task 3 Accomplishments and Progress: Process Scale Up | RDE Evaluations

Task 3Accomplishments and Progress:

Scaled PtNi nanoparticles

Sintering during high temperature annealing is limited.

Task 2-3 Accomplishments and Progress: PtNi NPs 5g batch in 50 cm² MEA

in collaboration with Kenneth Neyerlin, NREL

150 kPa, 100% RH, 80°C H_2/O_2 , 50 cm², N211 Ultrasonic spray coated 0.9 I:C (D2020 ionomer) Cathode loading 0.04mgPt/cm2

Developed RW092 PtNi/HSC: im^{0.9V} ~ 500 mA/mg_{Pt}

PtNi/C shows MA that meets the DOE target in 50 cm² MEA

5 nm Pt₃Co-1 g catalyst per batch

- Developed one-pot scalable synthesis of 6 nm PtCo nanoparticle.
- Post-treatment needs to be optimized for better performance.

Task 2-3 Accomplishments and Progress:

scaled 5nm PtCo in 50 cm² MEA

in collaboration with Kenneth Neyerlin, NREL

- 150 kPa, 100% RH, 80°C H₂/O₂, 50 cm², N211
- Ultrasonic spray coated at NREL 0.9
 I:C (D2020 ionomer)
- Cathode loading 0.055 mg Pt/cm²

Developed PtCo/_{HSA}C: i_m^{0.9V} ~ 350 mA/mg_{Pt}

One-pot synthesis and structural optimization of Nanocages

0.6 g per batch modified acid leaching procedure

One-pot synthesis-1 g per batch of PtNiCo Nanocages

Task 2 Introduction:

Pt₃Co Catalysts Structures

in collaboration with K.L. More, ORNL

💃 ОАК

RIDGE

Annealing sequence of Pt₃Co NP

HAADF at different T and t(min)

HAADF and EDS elemental mapping

3-D model (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001)

M. Chi, C. Wang, Y. Lei, G. Wang, K.L. More, A. Lupini, L.F. Allard, N.M. Markovic, and V.R. Stamenkovic **Nature Communications 6 (2015)** *No.* 8925 Dynamic of structural and chemical evolution at the atomic scale of Pt₃Co NPs during in-situ annealing distinct behavior at critical stages:

{111}, {110}, {100} facets play different roles during the evolution of structure

formation of a Pt-Skin shell with an alloyed disordered core;

the nucleation of ordered domains;

the establishment of an ordered $L1_2$ phase followed by pre-melting

Task 1 Introduction: In-Situ EC-ICP-MS Pt-Alloys Intermetallic

0.6

0.4

0.2

0.0

Pt Co

Specific Activity (mA cm⁻²)

Task 1 Accomplishments and Progress: As-Synthesized PtCo_{IM}/C 8nm NPs

CAK Task 2 Accomplishments and Progress: Scaled Intermatallic *PtCo/HSC*

in collaboration with K.L. More, ORNL

Majority of NPs have L10 ordering Pt:Co in powder 45:55

Surface facets demonstrate alternating Pt and Co (100) planes Pt atoms – yellow arrows; Co atoms – green arrows

in collaboration with Debbie Myers, ANL - CSE

The annealed and carbon-supported intermetallic PtCo NPs were analyzed using Pt L3 edge X-ray absorption spectroscopy

Sample	<u>Edge</u> <u>Energy</u> <u>(eV)</u>	<u>S</u> 2 ²	<u>CN</u> (Scattering Path)	<u>R (Å)</u>	<u>σ</u> ² (*10 ³ Å ²)	<u>E₀ (eV)</u>	<u>R factor (*10²)</u>
Pt	<u>11563.0</u>	<u>0.79</u>	$\frac{8.4 \pm 0.6 (\text{Pt-Pt})}{0.9 \pm 0.3 (\text{Pt-O})}$	$\frac{2.76 \pm 0.003}{2.01 \pm 0.04}$	$\frac{5.7 \pm}{0.04} \\ \underline{4.7 \pm 4.9} \\$		<u>k¹: 0.3</u> <u>k²: 0.2</u> <u>k³: 0.1</u>
<u>PtCo</u>	<u>11563.3</u>	<u>0.79</u>	$\frac{4.9 \pm 1.1 (\text{Pt-Pt})}{5.2 \pm 0.7 (\text{Pt-Co})}$	$\frac{2.69 \pm 0.01}{2.64 \pm 0.01}$	$\frac{3.3 \pm 1.0}{4.6 \pm 0.9}$	$\frac{5.2 \pm}{0.8}$ $\frac{5.2 \pm}{0.8}$	k ¹ : 0.08 k ² : 0.04 k ³ : 0.08

COAK RIDGE Task 2 Accomplishments and Progress: Scaled PtCo/HSC in 50 cm² MEA

in collaboration with Kenneth Neyerlin NREL and Karren More ORNL

Ultrasonic spray coated 0.9 I:C (D2020 ionomer) Cathode loading 0.056mgPt/cm2

Pt-Skin shell formation (2-3 layers) obvious in CCL of fresh MEA Loss of Co facilitates Pt-Skin formation on NP surfaces Surface oxides less prevalent

CCL thickness ~2.5 mm Wide cluster size distribution in CCL loss of Co in ink/MEA preparation Pt:Co 60:40

Task 2-3 Accomplishments and Progress: Scaled 8nm PtCo/HSC in 50 cm² MEA

in collaboration with Kenneth Neyerlin, NREL

150 kPa, 100% RH, 80°C H_2/O_2 , 50 cm², N211 Ultrasonic spray coated 0.9 I:C (D2020 ionomer) Cathode loading 0.056mgPt/cm2

Developed intermetallic PtCo/HSC: i_m^{0.9V} ~ 700 mA/mg_{Pt}

ECSA	(m²/g)
before AST	34.5
after AST	28.6

PtNi 9nm Intermetallic Structures in MEA

PtNi NPs keep the same morphology fater annealing PtNi NPs no sintering after annealing PtNi NPs converted to intermetallic structure

- 150 kPa, 100% RH, 80°C H₂/O₂, 50 cm², N211
- Ultrasonic spray coated 0.9 I:C (D2020 ionomer)
- Cathode loading 0.07 mgPt/cm2

Pt₃Co 2nm Annealed Structures

PtNi NPs keep the same morphology after annealing
Minimum sintering after annealing

Pt₃Co 2nm Annealed Structures in MEA

in collaboration with Kenneth Neyerlin, NREL

- 150 kPa, 100% RH, 80°C H₂/O₂, 50 cm², N211
- Ultrasonic spray coated at NREL 0.9 I:C (D2020 ionomer)
- Cathode loading 0.06 mgPt/cm2

Developed $Pt_3Co/_{HSA}C: i_m^{0.9V} \sim 520 \text{ mA/mg}_{Pt}$

PtCo/C 2nm shows MA that meets the DOE target in 50 cm² MEA

Pt₃Co 2nm Intermetallic Structures in MEA

in collaboration with Kenneth Neyerlin, NREL

2nm Pt₃Co/HSC also shows improved performance at high current density

Collaborations and Coordination

- **Differences** between RDE and MEA, surface chemistry, ionomer catalyst interactions
- Temperature effect on performance activity/durability
- High current density region needs improvements for MEA
- Support catalyst interactions
- Scale-up process (one pot and flow reactor) for the most advanced structures

1) Durability of fuel cell stack (<40% activity loss)

2) Cost (total loading of PGM 0.125 mg_{PGM} / cm²)

3) Performance (mass activity @ 0.9V 0.44 A/mg_{Pt})

Future Work

- Alternative approaches towards highly active and stable catalysts with low PGM content
- Tailoring of the structure/composition that can optimize durability/performance in Pt-alloys
- **Synthesis** of tailored low-PGM practical catalysts with alternative supports
- Structural characterization (in-situ XAS, HRTEM, XRD)
- Resolving the surface chemistry in MEA
- Electrochemical evaluation of performance (RDE, MEA)
- In-situ durability studies for novel catalyst-support structures (RDE-ICP/MS)
- Scale-up of chemical processes to produce gram quantities of the most promising catalysts
- Improved ECSA by introduction of catalyst particles with small size

• High Durability, High Duty, High ECSA systems

Future work will depend on appropriations

Technology Transfer Activities

Auto OEMs

FY19

1 NDA signed

• Constant build up of IP portfolio 7 issued patents, 6 pending

S U M M A R Y

Approach

- From fundamentals to real-world materials
- Focus on addressing DOE Technical Targets
- Link between the performance measured in RDE vs. MEA, Gas Diffusion Electrode is under construction
- Rational design and synthesis of advanced materials with low content of precious metals

Accomplishments

- Established dissolution rates of Pt for different particle size and loadings of Pt on carbon
- Resolved the mechanism of diminished Pt dissolution for Au subsurface
- Designed highly durable NPs: Applied the knowledge from well-defined surfaces to nanoparticles
- "No-Dissolution" Proof of Concept in Highly Durable NPs: Synthesis and Characterization of Pt₃Au/C NPs
- Well-Defined Pt-Alloy intermetallic systems are more active and durable vs. solid-solution Pt-Alloys
- Scaled several nanoarchitectures at the gram level quantities
- Compared HSA carbon vs. Vulcan
- Approached highly durable systems with low NP diameter ~2nm
- PtAu, PtCo 5nm, PtCo 2nm, PtNi 5nm, PtNi/PtCo intermetallic exceeded DOE 2020 Technical Target in 50 cm² MEA
- Two patent applications in FY19, 3 articles submitted and 3 presentations at conferences

Collaborations

- Collaborative effort among the teams from three national laboratories is executed simultaneously in three tasks
- Ongoing exchange with Auto-OEMs and stake holders
- Numerous contacts and collaborative exchanges with academia and other national laboratories

Full time postdocs:

Dr. Haifeng Lv (RDE, scale up synthesis, MEA) Dr. Nigel Becknell (Synthesis, RDE) Dr. Rongyue Wang (scale up synthesis, RDE, MEA)

Partial time Staff:

Dr. Pietro Papa Lopes (RDE-ICP-MS)

Publications and Presentations

3 Presentations 1 Patent Issued 3 Patent Applications

