FC144

Highly-Accessible Catalysts for Durable High-Power Performance

Anusorn Kongkanand (PI) General Motors, Fuel Cell Business

May 1, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 1 Apr 2016
- Project end date: 30 Jun 2019
- Percent complete: 75%

Budget

- Total Funding Spent as of 12/31/18: \$2.4M
- Total DOE Project Value: \$4.0M

(additional direct funding to NREL \$0.6M)

• Cost Share: 21.7%

Barriers

- B. Cost
 - Decrease amount of precious metals.
- A. Durability
 - Improve kinetic activity and high current density performance
- C. Performance
 - Achieve and maintain high current densities at acceptably-high voltages

Partners

- Subcontractors:
 - 3M Company
 - Carnegie Mellon University
 - Cornell University
 - Drexel University
 - NREL
- Project lead: GM

Relevance:

- □ FC087 Dealloyed PtCo and PtNi *met Catalyst Targets* (activity and durability) *but not MEA Targets* (high current density, HCD).
- \Box At HCD, high flux of O₂ and proton per a given Pt area causes large voltage loss on low-Pt cathode.
- □ The 'local transport resistance' dominates the mass transport related loss (purple).
- \Box Likely a sum of H⁺ and O₂ resistance at ionomer/Pt interface and in carbon micropores.
- □ Want to reduce apparent R^{Pt} from ~25 s/cm to <10 s/cm, or double the Pt ECSA.

Approach: Work Focuses in the Past Year

New Carbon Supports

- Study local transport using MEA electrochemical diagnostics, microscopy, and simulation.
- Understand support effects on durability.
- Optimize PtCo on accessible carbon with emphasis on stability

Electrolyte-Pt Interfaces: Ionomer and Ionic Liquid

- Develop process to add ionic liquid in MEA and study its effect.
- Identify new electrolyte-Pt interface affects fuel cell performance.

Ordered Intermetallic Alloys

Use advanced in-situ techniques to optimize activity/stability vs Pt-particle-size growth

Effects of Co²⁺ and Ce³⁺

> Validate cation performance model with in-situ visualization.

Relevance:

Targets and Status

Metric	Units	PtCo/KB 2016	PtCo/HSC-f	Ordered- PtCo/HSC-f	Ordered- PtCo/KB	PtCo/HSC-f	DOE 2020 Target	Project Target	<i>Green: meet target</i> <i>Red: not yet meet target</i> <i>Black: NA</i>
PGM total loading (both electrodes)	mg/cm ²	0.125 (0.025+0.10)	÷	÷	÷	0.075 (0.015+0.06)	<0.125	÷	
Mass activity @ 900 mV _{iR-free}	A/mg _{PGM}	0.62 ⁺	0.7 [†]	0.7	0.53 [†]	0.7 [†]	>0.44	÷	
Loss in catalytic (mass) activity	% loss	30%	59%*	45%*	16%	tbd	<40%	÷	
Performance at 0.8V (150kPa, 80°C)	A/cm ²	0.304	tbd	tbd	0.301	tbd	>0.3	÷	_
Power at rated power (150kPa, 94°C)	W/cm ²	0.8	0.95	0.94	tbd	0.91	>1.0	-	
Power at rated power (250kPa, 94°C)	W/cm ²	1.01	1.31	1.29	1.15	1.23	_	>1.1	Must meet Q/ΔT <1.45
PGM utilization (150kPa, 94°C)	kW/g _{PGM}	6.4	7.6	7.5	tbd	12.1	>8	÷	or >0.67 V at 94°C
PGM utilization (250kPa, 94°C)	kW/g _{PGM}	8.1	10.5	10.3	9.2	16.4	_	>9.1	
Catalyst cycling (0.6-0.95V, 30k cycles)	mV loss at 0.8A/cm ²	24	39*	25	8	tbd	<30	÷	-
Support cycling (1.0-1.5V, 5k cycles)	mV loss at 1.5A/cm ²	>500	>500	tbd	tbd	tbd	<30	-	

Objectives

- Reduce overall stack cost by improving high-current-density (HCD) performance adequate to meet DOE heat rejection and Pt-loading targets.
- □ Maintain high kinetic mass activities.
- □ Minimize catalyst HCD degradation.

* Meet target in absolute term (e.g. >0.26 A/mg_{PGM}) † MA at 0.9V_{RHE} in cathodic direction

This Year Target Highlights

- Improved durability of accessible-PtCo with minimal performance penalty using intermetallic ordering.
- □ Narrowed gap to 1 W/cm² (150kPa) target (now 0.95 W/cm²).
- Boosted PGM Utilization (to 12.1 vs target of 8 kW/g_{PGM} at 150kPa) by reducing Pt in both anode and cathode.

Approach: Milestones and Go/No Go

TASK 1 - Development of Highly-Accessible Pt Catalysts

Go/No-	go criteria: >1.0 W/cm ² , >8 kW _{rated} /g _{Pt} , and Q/ Δ T <1.7 with Pt/C \checkmark	2018 AMR	2019 AMR
	Downselect carbon support, ionomer, ionic liquid	100%	100%
	Measure the effect of leached Co ²⁺ and Pt surface area	100%	100%
	Develop dealloyed catalyst from ordered intermetallic alloy	100%	100%
	Visualize carbon structure and Pt location on selected catalysts	100%	100%
	Model baseline material	100%	100%

TASK 2 - Development of Dealloyed Catalyst with Preferred Catalyst Design

Go/No-go criteria : >0.44 A/mg_{PGM}, <40% mass activity loss with preferred design \checkmark

	-	
Develop dealloyed catalyst on preferred support	80%	100%
Implement selected ionomer and ionic liquid with selected catalysts	60%	100%
Visualize fresh PtCo/C and post-AST Pt/C	90%	100%
Model PtCo/C before and after AST	70%	100%

TASK 3 - Optimization for Durable HCD and LCD Performance

Milestone: >1.1 W/cm², >9.1 kW_{rated}/ g_{Pt} , and Q/ ΔT <1.45 \checkmark Jun 2019

Collaborations

Accessible-PtCo Stability

Although catalysts with Accessibleporous carbons outperform other catalysts at HCD (2 A/cm²) throughout the test, they show larger % losses of ORR MA and ECSA compared to KB.

> * HSC-en is an optimized and up-scale (20 g) of HSC-e † MA at 0.9 V_{RHE} measured in cathodic direction ‡ H₂/air, 94°C, 250 kPa_{abs}, 65% RH, stoich 1.5/2

8

Technical Accomplishment:

Improving Stability with Intermetallic Pt₃Co

GM

- TEM confirms MEA results: less particle growth, less Pt loss to membrane.
- □ Changes in Co/Pt ratio in cathode catalyst were comparable (~45%).

Technical Accomplishment: Also Effective on Accessible-PtCo

- Thermal annealing optimization study (time & temperature) was done on PtCo/KB and PtCo/HSC-f.
- Results from the best treatment condition are shown, although it was found that similar results were achievable among a wide range of condition, reflecting its robustness.
- □ Appears to be effective on accessible-porous carbon as well.

Technical Accomplishment: Pt/Co Composition Trade-off

11

- □ Catalysts with higher Co content give higher LCD but lower HCD.
- Noticeable amount of Co is lost from the catalyst even at beginning-of-life, further loss after AST.
- Trade-off is not simple, depending on users' operating condition, drive cycle, and MEA design.
- Need to better quantify/monitor Co amount during life, and ultimately, make the catalyst less prone to Co dissolution.

Technical Accomplishment: Sub-nm Resolution Lattice Strain Mapping

 ${\it Microscopy} and {\it Microanalysis}, 22 (1), 237-249, 2016.$

- Fast direct characterization of lattice strain with <1nm resolution</p>
- □ When acid leached PtCo, activity loss is more than expected from geometric strain relaxation alone.
- Subsequent annealing can recover activity, possibly by removing lattice dislocations
- Observed some dislocations (defects) in cycled and aggressively leached particles.

Technical Accomplishment: Ionic Liquid with Accessible-PtCo

- □ Improved electrode proton conduction and Pt utilization under dry conditions were confirmed.
- Unfortunately, IL benefits on fuel cell HCD performance hasn't been observed on PtCo/HSC-f.
 - Because of the fact that we had observed several times its benefit on PtCo/KB, makes us believe that the benefit is muted on PtCo/HSC-f due to its already-high Pt utilization at a relatively wet condition under normal operation.
- Ongoing effort to optimize IL application, and to evaluate IL potential durability benefit (next slide).

Technical Accomplishment: Ionic Liquid Reduces Pt Dissolution

- □ Presence of IL thin film on Pt/V and Pt/HSC leads to significant improvements in ECSA and ORR activity retention during RDE AST test (0.6-0.95 and 0.6-1.1 V). Lower Pt dissolution was confirmed by ICP.
- □ Ex-situ XPS and UPS analysis of IL thin film on Pt electrodes pre- and post-AST (0.6 1.2 V vs. RHE, 10,000 cycles) indicates little changes in IL chemistry.
- □ CO displacement charge at 0.4 V is lower in the presence of IL, indicating decreased anionic species. Intermediary IL thin film both limits ionic species specific adsorption, screening of SO³⁻ groups, and lower site blocking from hydrophobic domains of PFSA polymer.

Technical Accomplishment: **PFMI Ionomer**

- □ While 3M observed improved performance when PFMI [Perfluoromethyl bis(sulfonyl)imide] ionomer was used with Pt/C, first test at GM with PtCo/KB gave lower mass activity compared to PFSA ionomer.
- □ PFMI appeared to have less performance sensitivity to humidity.
- □ Were not yet able to confirm whether PFMI ionomer can improve HCD through less adsorbing acid group.

15

Technical Accomplishment: Accessible Carbons Appears More Open

STEM Tomography

PtCo/KB

Accessible-PtCo/HSC

Reconstructing Carbon, Pore, and Pt

Sliced Images showing Pore Openings

PtCo/KB

Accessible-PtCo/HSC

Comparatively, KB has smaller pore size (2-5 vs 5-10 nm) and smaller pore opening (1-2 vs 3-7 nm), and likely a more tortuous path.

Neither looks optimized

Technical Accomplishment: STEM-CT based Catalyst Aggregate Model

Microscopy data input

50 wt. % Pt/HSC STEM CT images

Synthetic addition of ionomer and water volumes to STEM images

Partially oxidized Pt with negative surface charge

Potential dependent H⁺ conc. from EIS conductivity measurements on ionomer-free carbon black

Transport and reaction models

- Poisson-Nernst-Planck equation to resolve various charge effects for H⁺ concentration and electric potential in the electrolytes
- Fixed space charges in ionomer and porous carbon
- Constant negative surface charge on Pt surfaces
- Diffusion equation for O₂ concentration
- Pt/ionomer interface O₂ transport limited Butler-Volmer type reaction model with Pt oxide coverage model

Technical Accomplishment: O₂ Diffusivity Through Water-Filled Pores

Measurement of O₂ diffusivity in 10 nm water-filled micropores

- Cannot explain performance difference between PtCo/KB and Accessible-porous catalysts, with their relatively small difference in pore sizes, using known values for O₂ transport.
- ❑ Literature has indicated quickly reduced gas diffusivity in <10 nm liquid-filled micropores (J. Phys. Chem. C, 2017, 26539 & J. Phys. Chem. C, 2017, 15675)
- Ex-situ O₂ diffusivity measurement in water-filled <10 nm pore is underway.</p>

SOA Integration & DOE Validation

SOA Components

Cathode:	30 wt.% Intermetallic ordered Pt_3Co/HSC -f at 0.06 and 0.10 mg _{Pt} /cm ² , PFSA ionomer, 900 EW, I/C ratio of 0.8,
Anode:	Pt/HSC, 0.015 mg _{Pt} /cm ²
PEM:	PFSA with reinforcement layer, ~10 μ m thick
GDL:	~100 μ m thick carbon fiber layer with 30 μ m MPL. Water proof.

Metric	Units	PtCo/KB 2016	PtCo/HSC-f	Ordered- PtCo/HSC-f	Ordered- PtCo/KB	PtCo/HSC-f	DOE 2020 Target	Project Target
PGM total loading (both electrodes)	mg/cm ²	0.125 (0.025+0.10)	÷	÷	÷	0.075 (0.015+0.06)	<0.125	÷
Mass activity @ 900 mV _{iR-free}	A/mg_{PGM}	0.62 ⁺	0.7	0.7	0.53	0.7	>0.44	÷
Loss in catalytic (mass) activity	% loss	30%	59%*	45%*	16%	tbd	<40%	÷
Performance at 0.8V (150kPa, 80°C)	A/cm ²	0.304	tbd	tbd	0.301	tbd	>0.3	÷
Power at rated power (150kPa, 94°C)	W/cm ²	0.8	0.95	0.94	tbd	0.91	>1.0	-
Power at rated power (250kPa, 94°C)	W/cm ²	1.01	1.31	1.29	1.15	1.23	-	>1.1
PGM utilization (150kPa, 94°C)	kW/g _{PGM}	6.4	7.6	7.5	tbd	12.1	>8	÷
PGM utilization (250kPa, 94°C)	kW/g _{PGM}	8.1	10.5	10.3	9.2	16.4	-	>9.1
Catalyst cycling (0.6-0.95V, 30k cycles)	mV loss at 0.8A/cm ²	24	39*	25	8	tbd	<30	÷
Support cycling (1.0-1.5V, 5k cycles)	mV loss at 1.5A/cm ²	>500	>500	tbd	tbd	tbd	<30	-

- □ Reduce anode Pt loading by shifting to high ECSA Pt/HSC catalyst.
- □ Will prepare MEAs (38cm²) for DOE validation at NREL.

Responses to Last Year AMR Reviewers' Comments

- "should benchmark against new commercial catalysts, which are showing very high mass activity in MEAs"
 - We routinely benchmark against suppliers' catalysts. Our PtCo/KB and PtCo/V baseline catalysts reported here are competitive. Note that some high mass activity reported by some groups are due to difference in measurement protocols.
- "Investigate whether increased ORR activities after more conditioning has any effect on HCDs"
 - It does. We're aware of it and ensure that it does not affect our conclusion.

- Modeling "serves only as a confirmation of what is already understood", "not apparent that it is critical to the project", "benefit for the greater community are difficult to derive"
 - Fuel cell is a complicated device and until we apply numbers with reasonable assumption to try to explain the phenomenon, it is impossible to prove the hypothesis. The model allows us to do so.
 - > Notable findings from modeling: (a) how internal vs external Pt dissolve/redeposit, (b) importance of high negative Pt surface charge in carbon pores on kinetic and proton transport, (c) existence of high O_2 diffusion resistance in carbon pores. These will be published in detail.
- "should increase the understanding of ionic liquid stability"
 - Although we agree that durability testing should be done, we do not have resource to do so. Another issue is that we do not have a method to characterize the IL once it is made into an MEA, other than watching the voltage which is an indirect measurement. This complicates the effort.
 - That being said, we value IL as a tool to understand the Pt-ionomer interface. It's also shown that IL could mitigate Pt dissolution.

Future Work

Validation

- Evaluate durability of low-loaded (0.075 mg_{Pt}/cm², cathode+anode) MEA. Employ MEA diagnostics and modeling to understand performance loss.
- □ Prepare MEAs for DOE validation at NREL.

Materials Development

- □ Implement new ionomer on accessible-porous carbons.
- Optimize IL application and evaluate potential durability benefit of IL.
- Catalyst synthesis path for intermetallic ordered PtCo with well controlled size.

Fundamentals

- □ Finalize catalyst particle-pore performance model and cation fundamental performance model.
- □ Study effects of local lattice strain on ORR activity using STEM with pixel array detector.
- \Box Ex-situ measurement of O₂ diffusivity in water-filled nanopores

Any proposed future work is subject to change based on funding levels.

21

Summary

- Progress to DOE target status
 - Advanced PGM Utilization status by 15% by reducing Pt in both anode and cathode.
 - Narrowed gap to 1 W/cm² (150kPa) target (now 0.95 W/cm²).

Promising materials

- Intermetallic ordering was effective for improving durability of accessible-PtCo with minimal performance penalty.
- While ionic liquid were beneficial for some PtCo/HSC, benefits on our best accessible-catalyst was not yet realized. Potential merit on stability awaits confirmation in MEA.
- □ Improved understanding of Iow-PGM electrode
 - 3D-TEM and modeling confirmed that internal pore size (opening) is the key factor for good ORR activity and transport properties in porous carbon catalysts.
 - Ex-situ tests and modeling highlighted (a) importance of high negative Pt surface charge in carbon pores on kinetic and proton transport and (b) unusually strong dependent of O₂ diffusivity on carbon pore size.
 - STEM Nanobeam Diffraction allows study of how lattice strain and defect in Pt shell affect ORR activity in MEAs.

Acknowledgements

DOE

- Greg Kleen (Program Manager)
- Donna Ho (Technology Manager)
- Dan Berteletti

General Motors

- Aida Rodrigues, Yevita Brown, Sheryl Forbes, Charles Gough (Contract Managers)
- Venkata Yarlagadda
- Michael K. Carpenter
- Yun Cai
- Thomas E. Moylan
- Joseph M. Ziegelbauer
- Ratandeep Singh Kukreja
- Wenbin Gu
- Srikanth Arisetty
- Roland Koestner
- Cristin L. Keary
- Qiang Li and team
- Peter Harvey and team
- Kathryn Stevick and team
- Tim Fuller
- Shruti Gondikar
- Mohammed Atwan
- Nagappan Ramaswamy
- Dave Masten
- Swami Kumaraguru
- Craig Gittleman
- Mark F. Mathias

<u>3M</u>

- Dr. Andrew Haug (sub-PI)
- Matthew Lindell
- Tyler Matthews

Carnegie Mellon University

- Prof. Shawn Litster (sub-PI)
- Shohei Ogawa
- Jonathan Braaten
- Leiming Hu
- Yuqi Guo

Cornell University

- Prof. David A. Muller (sub-PI)
- Prof. Héctor Abruña
- Elliot Padgett
- Matthew Ko
- Barnaby Levin
- Yin Xiong
- Yao Yang

Drexel University

- Prof. Joshua Snyder (sub-PI)
- Yawei Li

NREL

- Dr. K.C. Neyerlin (sub-PI)
- Luigi Osmieri
- Jason Christ
- Shaun Alia
- Jason Zack

ANL / APS

- Dr. Deborah J. Myers
- Dr. Nancy N. Kariuki
- Dr. Ross N. Andrews
- Dr. Jan Ilavsky

LANL

- Dr. Andrew M. Baker
- Dr. Rangachary Mukundan
- Dr. Rod L. Borup

Technical Back-Up Slides

Technical Accomplishment: In-Operando Co²⁺ Migration with Nano-CT

In-Operando Cation Transport with Confocal µ-XRF

Experimental Setup

□ 3D-Cation Transport: Ce profile in a MEA (13% Ce-NR212) under a load of 50mA/cm²

80°C, 50% RH, H₂/air at 100/200 sccm Ce fluorescence Cath. GDI An. GDL PEM **Cell front cCL** Anode Cathode flow Avg. Ce flow field (165-195 µm) field aCL (depth) 450µm cCL 215 µm Pt (Au) L3 Ce L aci 80 20 60 40 Scan length (µm) * :at depth > 200um, Ce signal is greatly attenuated by the PFSA/water matrix.

- At cell front (~30µm of depth), Ce cations at cCL move toward the inner cell due to the in-plane potential gradient in addition to the through-plane potential from the load.
- At >150µm of depth, Ce cations accumulate toward cCL side driven by through-plane potential only.

26

Technical Accomplishment: **IL Mediation of Nafion Specific Adsorption**

Nafion/IL Thin Films on Pt(111)

Pt(111)

- CO displacement charge at 0.4 V vs. RHE is lower in the presence of IL, indicating decreased anionic species
- CO displacement below the Pt PZC, < 0.3 V vs. RHE at pH 1, indicates increased H adsorption, approaching that of bare Pt(111), in the presence of IL
- Intermediary IL thin film both limits ionic species specific adsorption, screening of SO³⁻ groups, and lower site blocking from hydrophobic domains of Nafion polymer

