

FY18 SBIR Phase II Release 1: Multi-Functional Catalyst Support

pH Matter: Minette Ocampo, Paul Matter, Chris Holt, Michael Beachy Giner: Hui Xu, Magali Spinetta NREL: Guido Bender, Bryan Pivovar

> pH Matter LLC Columbus, OH

April 29, 2019 Project ID: FC167

This presentation does not contain any proprietary, confidential, or otherwise restricted information

- Founded in 2010, located in Columbus, OH
- Mission: to develop and commercialize materialbased products for alternative energy applications.
- Expertise in:
 - Catalyst synthesis, development, and scale-up
 - Fuel Cell development
- Commercialization experience with catalysts, advanced materials, and electrochemical devices

Overview

Timeline and Budget

- Project Start Date: 05-21-2018
- Project End Date: 05-20-2020
- Total Project Budget: \$ 1,000,000

Partners

- Giner Labs
- NREL
- Dr. Shyam Kocha

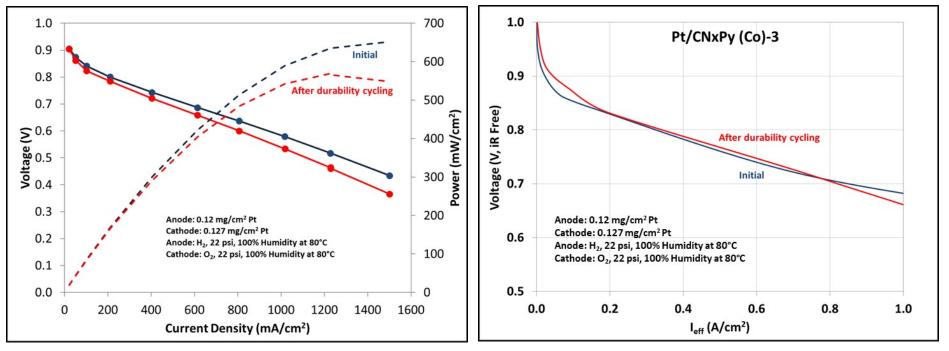
Barriers Addressed

- Cost:
 - Enhancement of the Pt catalyst activity (and durability) to reduce its loading levels.
- Durability:
 - Optimize the interaction between the catalyst and the support material to improve chemical and thermal stability.
- Performance:
 - Demonstrate improved performance with the engineered supports in an MEA.

Objective: Develop a multi-functional carbon support (that is based on nitrogen- and phosphorus-doped carbon nano-structures (CN_xP_y) and is optimized to perform better than conventional PEMFC pure carbon supports.

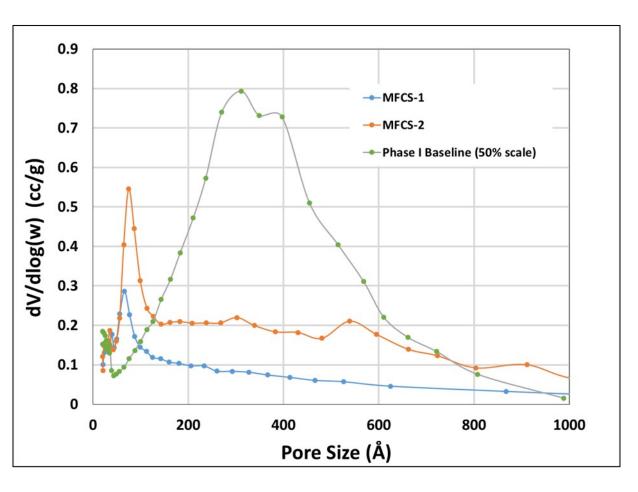
Characteristic	Unit	DOE 2020 Target		
Platinum group metal Loading	mg _{PGM} /cm ²	0.125		
Mass activity	A/mg _{PGM} @ 0.9V	0.44		
Loss in initial catalytic activity	% Mass activity loss	<40		
Loss in performance at 0.8 A/cm ²	mV	<30		
Electrocatalyst support stability	% Mass activity loss	<40		
Loss in performance at 1.5 A/cm ²	mV	<30		

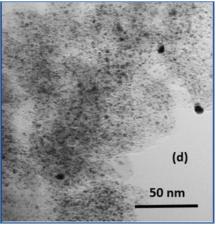
- Demonstrate DOE 2020 targets for catalyst durability with low PGM loadings
- Improved current density at low PGM loadings
- Show potential for high current density by tuning hydrophobicity

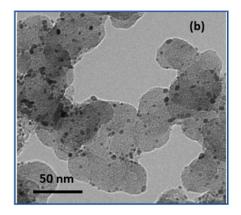


Tasks / Key Milestone	Quarter after project initiation							
	1	2	3	4	5	6	7	8
Task 1. Catalyst Optimization (pH Matter)								
Task 1.1 Support Synthesis	•							
Task 1.2 Platinum Deposition								
Task 1.3 Catalyst Characterization	•							
Task 2. Catalyst Scale-up (pH Matter)								
Task 2.1 Twenty-gram Batches								
Task 2.2. Quality Control Development								
Task 2.3 Commercial-Scale Batch								
Task 3. MEA Synthesis (Giner)								
Task 3.1. Ink Optimization								
Task 3.2. High Current Optimization								
Task 3.3. Processing Optimization								
Task 3.4 MEA Synthesis for Customer Validation								
Task 4. MEA Testing (pH Matter)								
Task 4.1. Differential 5-cm ² MEA Testing								
Task 4.2. Full-Scale 25-cm ² MEA Testing								
Demonstrate automotive targets				•				
Demonstrate automotive targets with scalable processing							•	
Task 5. Validation Testing (NREL, Ballard, Others)								

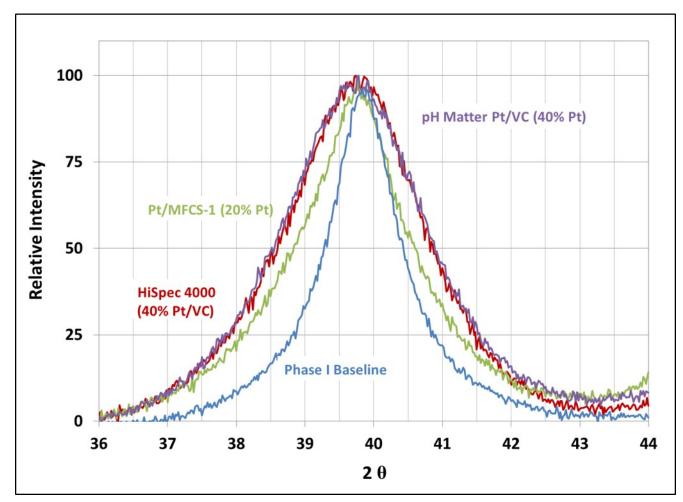
Developed a catalyst with pH Matter engineered CNxPy support that demonstrated DOE targets for Pt loading, mass activity and durability in Phase I



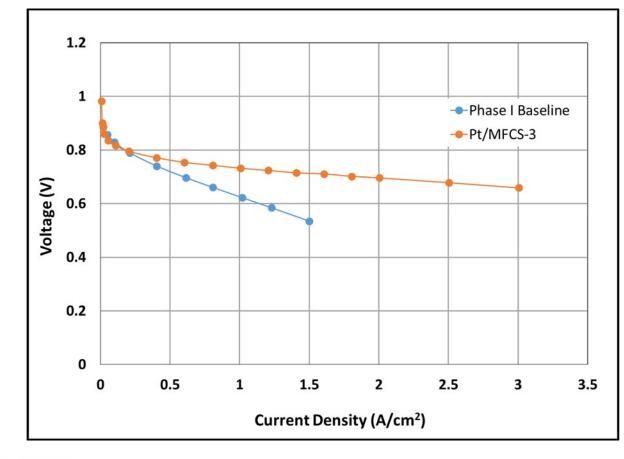

Based on IR-correction, the degradation at 0.8 A/cm^2 was likely from the membrane


Accomplishments

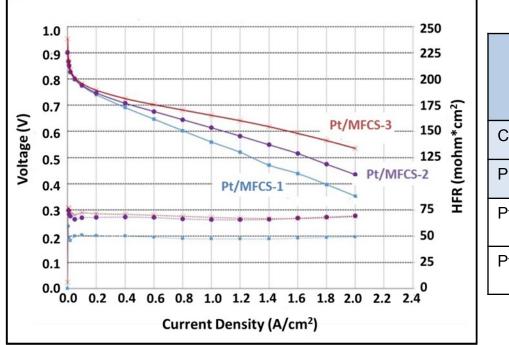
Support Synthesis: In Phase II, pore structure of the Multi-Functional Carbon Support (MFCS) was improved:


Phase I Baseline (20% Pt)

20% Pt/MFCS-1



Pt Reduction: improved reduction conditions to match commercial catalyst Pt particle size:


Catalyst performance in MEA: Improvement in performance for Pt/MFCS compared to the Phase I baseline catalyst under oxygen:

25-cm² active area, 80°C, 100% RH, H_2/O_2 , 150 kPa Cathode loading of 0.1 mg_{PGM}/cm²

MEA Performance and durability: Steady improvement in air performance both BOL and EOL:

Catalyst	Mass A (mA	ΔV at 0.8 A	
	BOL	EOL	/cm² (mV)
Commercial Pt/C	304	140	148
Phase I Baseline	323	449	36
Pt/MFCS-1	In Progress	In Progress	In Progress
Pt/MFCS-3	In Progress	In Progress	In Progress

Cathode loading of 0.1 mg/cm², 80°C, 100%RH, 150 kPa

Reviewers' Comments

This project was not reviewed last year

Collaborations

Giner Labs

- Industry Partner
- Subcontract
 - Ink development
 - MEA fabrication
 - MEA testing

NREL

- Federal Lab Partner
- Independent validation of MEAs under industry standard procedures

Ballard

- No-cost partner
- Provide testing and feedback on MEA performance

Dr. Shyam Kocha

Consultant

- Demonstrate DOE 2020 targets for PGM loading, EOL mass activity, and durability simultaneously in 25-cm² MEA testing
- Demonstrate improved corrosion resistance of engineered supports versus commercial catalysts
- Platinum deposition scale-up on the MFCS

- Further improve catalyst performance by alloying the platinum with other metals
- Further MEA optimization to address mass transport and cathode flooding issues by tuning hydrophobicity
- Electrode characterization before and after cycling to better understand degradation mechanisms
- Third-party validation to demonstrate DOE targets
- Partner with MEA manufacturers

Any proposed future work is subject to change based on funding levels

- Licensed carbon composition from the Ohio State University
- Pending patents on the multi-functional carbon support
- Giner is providing expertise and know-how with state-of-the-art MEA synthesis and ionomers

- Synthesized Multi-Functional Carbon Supports (MFCS) that are optimized for high power and durability
- Optimized catalyst synthesis to obtain optimal platinum particle size and performance
- Demonstrated high power performance over Phase I baseline catalyst with no significant alloying
- Demonstrated improvement of performance with further catalyst synthesis optimization
- Further improvement of catalyst activity will be performed with alloying and electrode structure optimization