Project ID: fc172

Highly Active and Durable PGM-free ORR Electrocatalysts through the Synergy of Active Sites

Yuyan Shao

Pacific Northwest National Laboratory 04/30/2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 10/01/17
- Project End Date: 03/31/21*
 - * Project continuation and direction determined annually by DOE
 - * No-cost extension for 6 months (Year 1: 10/01/17-03/31/19)

Budget

- Total Project Budget: \$2,223,776
 - **Total Recipient Share:** \$223,776
 - Total Federal Share: \$2,000,000
 - Total DOE Funds Spent*: \$589,311

* As of 03/04/19

Barriers

- Barriers addressed
 - Cost (catalyst)
 - Activity (catalyst; MEA)
 - Durability (catalyst; MEA)

Partners

- Washington Univ. in St. Louis
- Univ. of Maryland, College Park
- Ballard Power Systems Inc. ۲
- ElectroCat
- **Project lead: PNNL**

Relevance

PGM-free ORR catalysts could significantly decrease fuel cell cost, but the state-of-art activity and, particularly stability need improvement.

Ref.: 1) Adv. Mater. 2019, adma.201807615

Relevance

H₂O₂(radicals) play a significant role in PGM-free ORR catalysts degradation.

This project will decrease H_2O_2 (radical) formation through dual active site catalysts, doubling stability than baseline, while maintaining the high activity.

Ref.: 1) Energy Environ. Sci. 2018, DOI: 10.1039/C8EE01855C; 2) Adv. Mater. 2019, adma.201807615

Approach

Dual active sites for ORR and H₂O₂: MNx & radical scavenger

Fundamental understanding using ElectroCat capabilities includes HR-STEM, synchrotron X-ray, *In situ* degradation measurement/detection, and MEA diagnosis.

Approach

Milestone	Milestone Description (Go/No-Go Decision)	Complete
GNG1 (Year 1)	Demonstrate a PGM-free catalyst $\geq 20 \text{ mA/cm}^2$ at 0.90 V (iR- corrected) in an H ₂ -O ₂ fuel cell and 100 mA/cm ² at 0.80 V in an H ₂ -air fuel cell (measured); maintain partial pressure of O ₂ + N ₂ at 1.0 bar (cell temperature 80 °C).	100%
M2.2	Identify O ₂ reduction catalysts with $E_{1/2}$ >=0.81V ($\Delta E_{1/2}$ < 50mV (vs. Pt/C)) under RRDE test (01/31/19)	100%
M1.2	Identify pathways to produce 20g catalysts using thermal shock activation technique (07/31/19)	50%
M3.3	Identify dual-site catalysts with $E_{1/2}$ >=0.82V ($\Delta E_{1/2}$ < 45 mV (vs. Pt/C)) under RRDE test (07/31/19)	100%

GNG2 (Year 2) Demonstrate a PGM-free catalyst $\geq 25 \text{ mA/cm}^2$ at 0.90 V (iRcorrected) in an H₂-O₂ fuel cell and 125 mA/cm² at 0.80 V in an H₂-air fuel cell (measured); maintain partial pressure of O₂ 50% + N₂ at 1.0 bar (cell temperature 80 °C). (10/31/19)

Key updates: Dual active site catalyst FeNC_NCeOx exceeds Year 1 & Year 2 activity milestone and Year 1 performance milestone, improves catalyst stability.

Anode: $0.2mg/cm^2_{Pt} 30wt\%$ Nafion ionomer; Cathode: $4.5mg/cm^2_{PGM-free}$ (FeNC_5%NCeOx), 35wt% Nafion ionomer; Membrane: Gore (15µm); Active area: 5 cm²; 80%% RH, 80°C, O₂+N₂=1 bar. Stability test (in H₂/O₂): constant cell voltage at 0.4V for 55min and then 0.85V for 5min (0.4V_55min/0.85V_5min), record current density at 0.85V, repeat. Improved stability

- Radical scavenger NCeOx is directly loaded onto FeNC catalyst – more improvement possible with better integration.
- 2. Our stability test protocol is designed to maximize the negative effect of H_2O_2 (radicals).

Atomically dispersed FeNC catalysts

STEM/EELS confirm atomic dispersion of Fe and very common FeNx moieties (most atoms probed showed Fe and N).

Atomically dispersed FeNC catalysts

XANES and EXAFS confirm Fe valence between 2+ and 3+, and FeNx (with some Fe-O bonds), but free of Fe-Fe and Fe-C.

FeNC catalyst exceeds Year 2 activity and performance milestones

- MEA Anode: $0.2mg/cm^2_{Pt} 30wt\%$ Nafion ionomer; Cathode (single layer): $4.0mg/cm^2_{PGM-free}$ (012319-Fe(acac)3-1000C-xh), 35wt% Nafion ionomer; Membrane: Gore (15µm); Active area: 5 cm²; 80%% RH, 80°C, O₂+N₂=1 bar RDE – PGM-free in 0.5M H₂SO₄, 600ug/cm²; Pt/C (60ug_{Pt}/cm²) in 0.1M HClO₄.
- 1. High activity in both RDE and MEA tests
- 2. Max power density 0.43W/cm² (H₂/Air)

Dual active site catalyst: FeNC+NCeOx (physical mixing)

Anode: $0.2mg/cm^2_{Pt} 30wt\%$ Nafion ionomer; Cathode: 4.1mg/cm²_{PGM-free} (012319-Fe(acac)3-1000Cxh+3.5%NCeOx/C), 35wt% Nafion ionomer; Membrane: Gore (15µm); Active area: 5 cm²; 80%RH, 80°C, O₂+N₂=1 bar Stability test (in H₂/O₂): constant cell voltage at 0.4V for 55min and then 0.85V for 5min (0.4V_55min/0.85V_5min), record current density at 0.85V, repeat.

- 1. Improved stability with NCeOx
- 2. Adding NCeOx decreases performance and activity, still nearly hitting Year 1 GNG.

Dual active site catalyst: FeNC_NCeOx (direct loading) Improved activity and performance

Dual active site catalyst: FeNC_NCeOx (direct loading) Improved stability

Anode: $0.2 \text{mg/cm}^2_{Pt} 30 \text{wt\%}$ Nafion ionomer; Cathode: $4.5 \text{mg/cm}^2_{PGM-free}$ (FeNC_5%NCeOx), 35 wt% Nafion ionomer; Membrane: Gore ($15 \mu \text{m}$); Active area: 5 cm²; 80%% RH, 80° C, $O_2+N_2=1$ bar. Stability test (in H₂/O₂): constant cell voltage at 0.4V for 55min and then 0.85V for 5min (0.4V_55min/0.85V_5min), record current density at 0.85V, repeat.

- 1. Improved stability of dual active site catalyst FeNC_NCeOx.
- 2. FeNC_NCeOx activity/performance is slightly lower than FeNC.

Dual active sites decrease CO₂ emission, increase stability Tested with LANL (CM+PANI)-Fe-C(Zn) catalyst (physical mixing)

Any proposed future work is subject to change based on funding levels.

Thermal shock activation synthesis of CoZIF catalysts.

1-4: radiation heating samples, 5: traditional furnace sample

Test condition: 0.5M H₂SO₄, 50mV/s CV, ORR staircase potential step of 0.025 V at intervals of 25 s from 1.0 to 0.0 V vs RHE. Catalyst loading: 0.6mg/cm².

Optimized thermal shock increases surface area (from double layer capacitance), but ORR activity increase is limited.

Thermal shock is not effective enough to remove Zn.

(also see Review comments #5)

Thermal shock activation synthesis of FeZIF catalysts (radiation heating)

Optimized thermal shock increases surface area (from double layer capacitance), but not for ORR activity of FeZIF catalyst (after 2nd heat-treatment).

```
Test condition: 0.5M H_2SO_4, 50mV/s CV, ORR staircase potential step of 0.025 V at intervals of 25 s from 1.0 to 0.0 V vs RHE. Catalyst loading: 0.6mg/cm^2.
```

Thermal shock activation did not fully pyrolyze FeZIF precursor

- Surfaces coated with Zn with usually high N content (20 at.%), but without Fe particles
- Carbon EELS edge did not look highly graphitic
- Not fully pyrolyzed.

Thermal shock activation synthesis of FeZIF catalysts (radiation heating)

- 1. Thermal shock sample has lower oxidation state (than regular FeN4 samples), likely due to incomplete pyrolysis of precursor; it also likely has carbide (high shock temperature may convert FeN4 to carbide?)
- 2. No Fe-Fe bonds observed.
- 3. Lower active site density leads to lower ORR activity? need to confirm.

Thermal shock synthesis of new radical scavenger NTaTiOx: Small and uniform particles, decreased H_2O_2 formation

Responses to Previous Year Reviewers' Comments

- Comments: "...show a clear side-by-side comparison of MEA degradation ..., vs. ...catalyst without peroxide decomposer..." Response: MEA test results on durability w/wo H₂O₂ decomposers have been reported (FY19 AMR slides).
- Comments: "... the team should ... attain reasonable ORR activities...." Response: we have improved ORR activity to >30mA/cm²@0.9V in H₂/O₂ (FY19 AMR slides).
- **3.** Comments: "...not demonstrated that peroxide decomposition will protect the active sites, ionomer, and membrane sufficiently." **Response:** we have demonstrated decreased CO₂ (related to catalyst stability) and F release (related to ionomer and membrane stability) (FY18 and FY19 AMR slides).
- 4. Comments: "... the team's uncertainty in how to achieve molecular-level integration of the two types of active sites." Response: we have demonstrated direct loading of NCeOx onto PGM-free ORR catalyst which shows good activity/performance and improved stability (FY19 AMR slides).
- **5.** Comments: "...it is likely that the proper removal of Zn, ...is not possible with this (thermal shock) technique." **Response:** we did observe incomplete removal of Zn, and lower ORR activity for thermal shock samples; and thermal shock technique shows promising results in synthesizing uniform small metal oxide nanoparticles as H₂O₂ decomposer (radical scavenger) (FY19 AMR slides).

Collaboration & Coordination

Partner	Project roles
PNNL – Lead (Y. Shao, X. Xie, V. Prabhakaran, J. Liu)	Project lead, management and coordination; catalysts design, development and characterization, H_2O_2 decomposer development and integration.
Univ. Maryland(L. Hu)	Synthesis protocol – thermal shock activation, catalyst synthesis
WashU (V. Ramani)	Electrode design and MEA assembly, MEA test and analysis
Ballard (D. Banham)	MEA design, test and analysis

ElectroCat Capabilities

ANL	<i>In situ</i> and Operando Atomic, Nano-, and Micro-structure Characterization (X-ray adsorption, including <i>ex-situ, in-situ</i> in liquid/MEA) Electrode Microstructure Characterization and Simulation (X-ray Nano CT)	
LANL	In situ fluoride and carbon dioxide emission measurements (including F/metal/CO ₂ detection simultaneously)	
NREL	Kinetics and Transport (Operando differential cell measurements of electrochemical kinetics and transport)	
ORNL	Electron microscopy	

Remaining Challenges and Barriers

- Maintain high activity of PGM-free catalysts while improving its stability through dual active sites.
- Improve synergy of dual active sites.
- Determine catalyst material systems that thermal shock activation synthesis works for improved catalyst performance.
- MEA engineering for performance improvement in both H₂/O₂ and H₂/Air at high current density.

Proposed Future Work

- Optimize dual active site catalysts by direct loading radical scavengers to PGM-free catalysts (better dispersion and more uniform small particles of radical scavenger, new radical scavengers like NTaTiOx).
- Optimize PGM-free catalysts including active site density, morphology (e.g., particle size), surface property (e.g., hydrophobicity) to improve MEA performance (in combination with MEA engineering).
- Optimize thermal shock synthesis: 1) determine if MOF catalysts can be improved through thermal shock, 2) improve new radical scavenger synthesis, e.g., NTaTiOx.
- MEA diagnostics to evaluate sources and distribution of polarization within the MEAs.

Summary Slide

- Dual active site catalyst FeNC_NCeOx exceeds Year 2 activity milestones (30mA/cm², 0.9V in H₂/O₂) and Year 1 performance milestone (101.5mA/cm², 0.8V in H₂/Air).
- FeNC catalyst exceeds Year 3 activity milestone (35mA/cm², 0.9V in H₂/O₂) and Year 2 performance milestone (138mA/cm²-2nd test, 0.8V in H₂/Air).
- Dual active site catalyst improves catalyst stability. Direct loading of radical scavenger functions better than physical mixing method.
- Collaboration with ElectroCat helped deep understand our catalysts (chemistry, active sites).
- Need improvement and understanding on thermal shock synthesis.

Technical Back-Up Slides

Dual active site catalyst: FeNC_NCeOx (direct loading)

FeNC_NCeOx (direct loading) vs. FeNC+NCeOx (physical mixing)

Anode: $0.2mg/cm^2_{Pt} 30wt\%$ Nafion ionomer; Cathode: $4.5mg/cm^2_{PGM-free}$ (FeNC_5%NCeOx), 35wt% Nafion ionomer; Membrane: Gore (15µm); Active area: 5 cm^2 ; 80%% RH, 80°C, O₂+N₂=1 bar. Stability test (in H₂/O₂): constant cell voltage at 0.4V for 55min and then 0.85V for 5min (0.4V_55min/0.85V_5min), record current density at 0.85V, repeat.

FeNC_NCeOx show better activity and stability than FeNC+NCeOx, indicating NCeOx and its loading (dispersion) matters which points to potential room for improvement.