High Performing and Durable Pyrophosphate Based Composite Membranes for Intermediate Temperature Fuel Cells

2019 DOE Annual Merit Review

PI: Cortney R. Kreller

Team: Kannan Ramaiyan, Yu Seung Kim, Rangachary Mukundan, Mahlon Wilson

> Los Alamos National Laboratory Los Alamos, NM 87545

> > May 1, 2019

Project ID FC180

Managed by Triad National Security, LLC for the U.S. Department of E

EST.1943 —

os Alamos

NATIONAL LABORATORY

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project Start Date: January 2018
- Project End Date: July 2020*
- * 2nd year continuation contingent on fulfillment of 1st year milestones.

Barriers addressed

- Early stage membrane concept that can:
 - Decrease system costs by operating at higher temperature (150–400 °C)
 - Achieve membrane ASR of ≤ 0.02 Ω cm²
 - Achieve ASR $\leq 0.03 \ \Omega \text{cm}^2$ under low RH conditions
 - Achieve sufficient conductivity (0.2→ 0.02Ωcm²) across entire range of operating temperatures

Budget

- Funding received in FY18: \$150,000
- Total DOE Funds Spent: \$89,418

Partners

- University of New Mexico (Prof. Fernando Garzon)
 - No cost partner

Relevance

Objective: Develop membrane enabling system operation at higher temperature (200 °C) at low RH with conductivity across entire range of operating conditions for transportation applications.

Tailor composition of MP₂O₇ (MPP)/polymer composite membranes to achieve DOE target for membrane ASR of ≤ 0.02 Ωcm².

DOE Technical Target	LANL Impact	
Decrease system costs by operating at higher temperature (150–400 °C)	MP ₂ O ₇ /polymer composite membranes target operation temperature 200 °C	
Achieve membrane ASR of $\leq 0.02 \ \Omega \text{cm}^2$	Achieve $\sigma \ge 100$ mScm ⁻¹ at T ≥ 200 °C and RH<0.04bar while reducing MPP loading to cast membranes <40 μ m thick. Y1 GNG: ASR of <0.04 Ω cm ²	
Achieve ASR $\leq 0.03 \ \Omega \text{cm}^2$ under low RH conditions	Maintain target ASR under 0-0.04bar H ₂ O	
Achieve activity $(0.2 \rightarrow 0.02 \Omega \text{cm}^2)$ across entire range of operating temperatures	MPP/polymer composite membranes do not rely on phase change or high RH for H+ transport extending operating temperature range	

Approach: Tasks and Milestones

Q1: Synthesize and characterize 6 MPP 100% materials with varying dopant concentration and P:M ratio

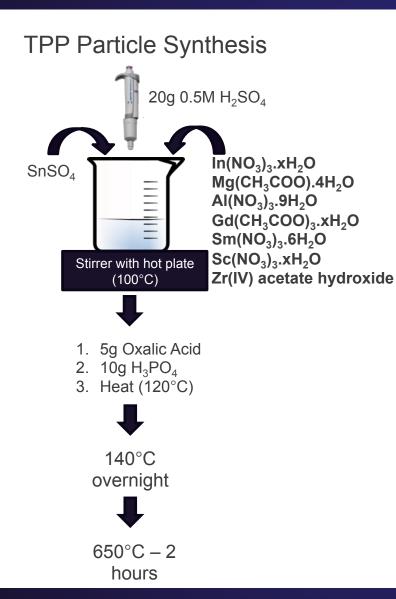
Q2: Establish trends in conductivity with P:M 100% ratio and cation dopant

Q3: Fabricate membranes from MPP materials that 10% exhibit high conductivities in powder form. Report membrane conductivities as a function of MPP loading and PA doping

Q4: Minimize membrane thickness while retaining 0% mechanical integrity

Synthesize MPP Materials with varying dopant concentration and P:M ratio

Materials Characterization Electrochemical characterization of powders

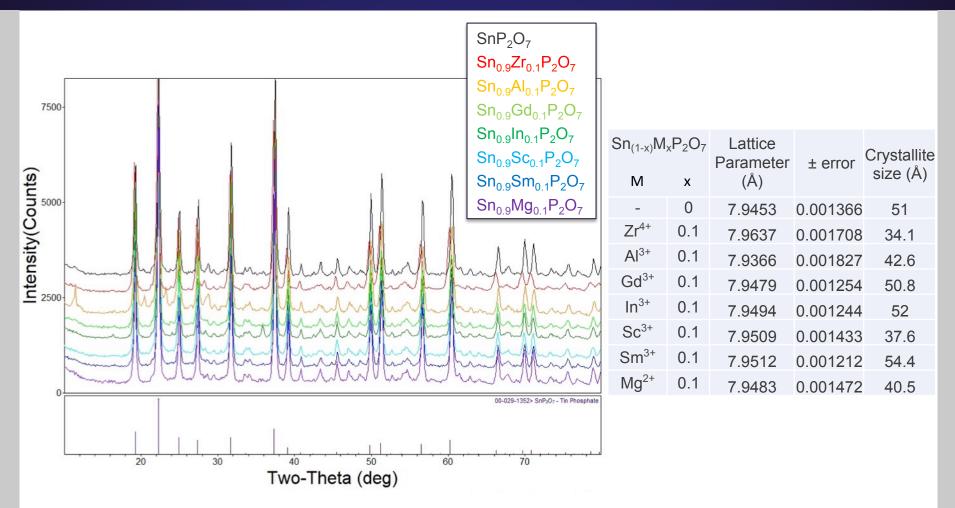

Fabrication of MPP/Nafion® composite membranes

Electrochemical characterization of membranes

GNG end of Phase 1: Demonstrate in-plane membrane conductivity of \geq 100mScm⁻¹ at T > 200°C and RH<0.04bar with a thickness \leq 40 μ m.

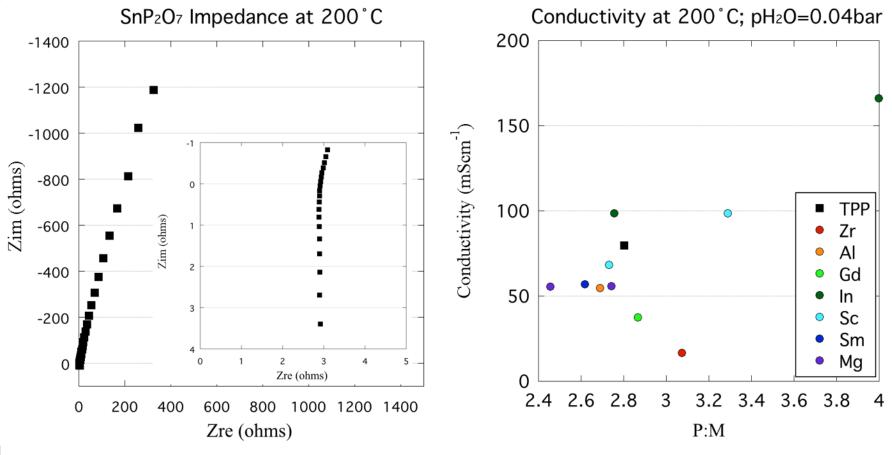
Specific Phase 2 quarterly milestones will be defined upon successful completion of Phase 1.

Accomplishments and Progress: Synthesis and characterization of bulk powders



Mass loss measured by TGA to 800°C

Sn _(1-x) N	$\Lambda_x P_2 O_7$	Weight loss (%)	P:M
М	Х		
-	0	24.10	2.80
Zr ⁴⁺	0.1	30.05	3.07
Al ³⁺	0.1	21.99	2.69
Gd ³⁺	0.1	25.34	2.87
In ³⁺	0.1	23.06	2.76
In ³⁺	0.1	44.23	4.00
Sc ³⁺	0.1	22.93	2.73
Sc ³⁺	0.1	30.39	3.29
Sm ³⁺	0.1	19.48	2.62
Mg ²⁺	0.1	15.76	2.46
Mg ²⁺	0.1	23.30	2.74


 Assumed volatile phase H₃PO₄+H₂O to calculate Phosphorous to Metal (P:M) ratio

Accomplishments and Progress: Synthesis and characterization of bulk powders

 Synthesized Sn_{1-x}M_xP₂O₇ powders with aliovalent dopants and varying amounts of excess polyphosphate phase

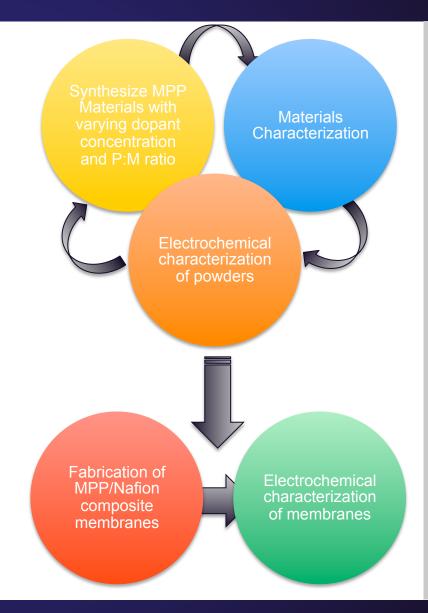
Accomplishments and Progress: Bulk pellet conductivity

- Highest conductivities observed for SnP2O7, Sn0.9In0.1P2O7 and Sn0.9Sc0.1P2O7

Responses to Previous Year Reviewer's Comments

Project was not reviewed last year

Collaboration & Coordination

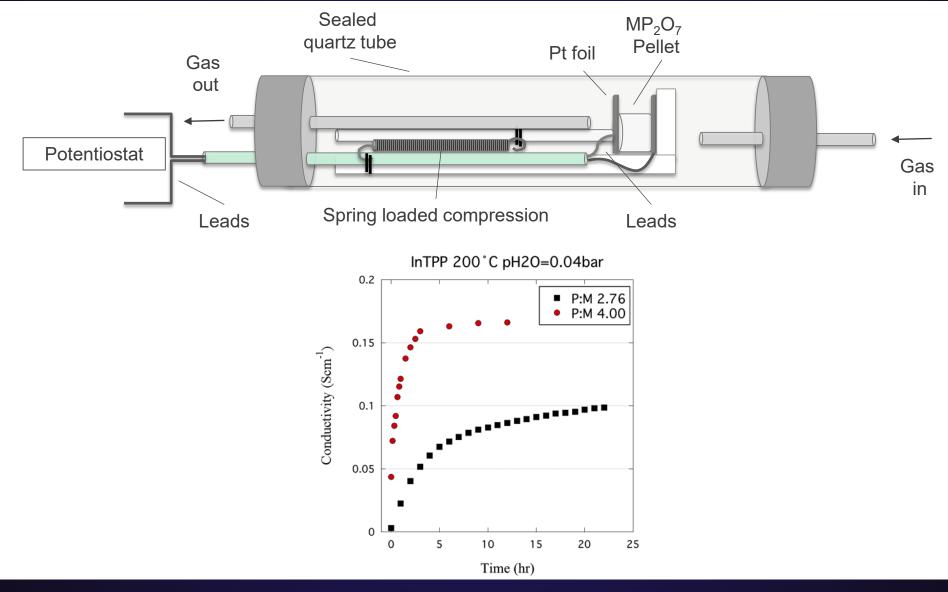

- Lab call project open to National Labs only- no official collaborators
- University of New Mexico- no cost partner interested in evaluating membranes for fuel electrosynthesis reactors
- Will solicit more partners once proof of concept is established

Proposed Future Work

- Fabricate membranes with Sn_{1-x}M_xP₂O₇ (M=In³⁺, Sc³⁺)
- Identify trends in PA uptake and total conductivity with dopant and with amount of excess polyphosphate phase
- For most promising conductors, identify optimum membrane composition (MPP:Nafion) for maximizing conductivity while minimizing thickness.
- Any proposed future work is subject to change based on funding levels.

Year 1 GNG: In-plane $\sigma \ge 100 \text{mScm}^{-1}$ while reducing the membrane thickness to $\le 40 \mu \text{m}$ at T>200°C and humidity <0.04bar

Year 2: Incorporate membranes into MEAs and demonstrate durability and start-up performance



Summary

- MPP materials of composition Sn_{1-x}In_xP₂O₇ have been synthesized with x=0,0.1 and P:M ratio of 2.0 (stoichiometric) and >2 (excess polyphosphate phase).
- Bulk pellet conductivity of P:M>2 materials was measured to be in reasonable agreement with prior results for MPP materials with comparable excess polyphosphate phase.
- Highest conductivities were observed for SnP_2O_7 , $Sn_{0.9}In_{0.1}P_2O_7$ and $Sn_{0.9}Sc_{0.1}P_2O_7$.
- Future work will identify trends in PA uptake and conductivity with MPP stoichiometry and amount of excess polyphosphate phase in composite membranes. The most promising materials will be used to optimize membrane composition.

Technical Back-up Slides

Technical Back-up Slides

