

Cyclic Olefin Copolymer based Alkaline Exchange Polymers and Reinforced Membranes

PI: Chulsung Bae

Rensselaer Polytechnic Institute

April 29, 2019

Project ID # FC307

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: Jan 1, 2019
- Project End Date : Dec 31, 2020

Barriers

- Performance
- Cost
- Durability

Budget

• Total Project Budget: \$1,275,000

- Total Cost Share: \$ 275,000
- Total Federal Share: \$ 1,000,000
- Total DOE Funds Spent*: \$ 0
- * As of 3/01/19

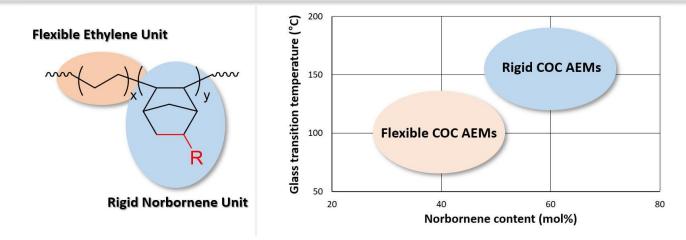
Partners

Xergy Inc.
 Bamdad Bahar

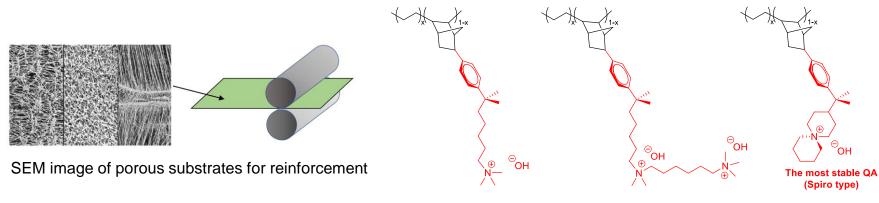
Los Alamos National Laboratory

Yu Seung Kim

Relevance


Objective

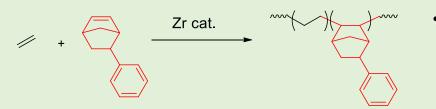
 Development of high-performance, low-cost AEMs by synthesis of a series of QAfunctionalized cyclic olefin copolymers (COCs) and impregnation using reinforcement technology.


Technical Targets

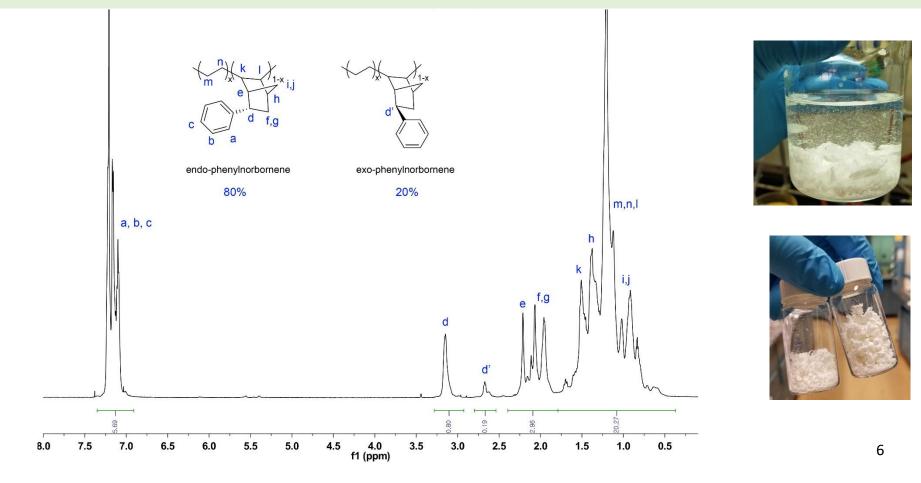
Technical Metrics	the-state-of-the-art AEM (m-TPN1)	2019 Target (Q4)	Ultimate Target (Q8)
Hydroxide conductivity (in-plane, 80 °C)	112 mS/cm	60 mS/cm	120 mS/cm
Alkaline stability (1M NaOH, 95 °C)	720 h, IEC drop <2%	500 h, <3%	1000 h, <3%
Tensile strength at break (50 ℃, 50% RH)	29 MPa	25 MPa	50 MPa
Elongation at break (50 °C, 50% RH)	36%	35%	70%
Swelling ratio (OH ⁻ form, 25 °C)	16%	20%	10%
Area specific resistance (80 °C; in fuel cell)	$0.18 \ \Omega \ cm^2$	$0.10 \ \Omega \ cm^2$	$0.05~\Omega~cm^2$

Approach

- Low cost monomers and polymers
- No heteroatom (O or N) in the backbone → *High alkaline stability*
- Excellent mechanical properties and dimensional stability due to high molecular weight
- Tunable Rigidity by varying the ratio of ethylene and norbornene/cyclic olefins in the backbone
- **Pore-filling reinforcement** for enhancing durability and extending lifetime of MEAs


COC-TMA (1st gen.)

COC-N2 (2nd gen.)


Milestone & go-no-go decision

Milestone 1.1	Synthesis of COCs (Q1–Q4) ← current status	Polymer synthesis with high molecular weight (>100 kg/mol), ethylene composition (10–50 mol%)	
Milestone 1.2	Friedel-Crafts bromoalkylation of COCs (Q3–Q5)	Optimization of synthetic process that gives degree of functionalization (30–90% of phenyl ring of COC)	
Milestone 1.3	Ionic functionalization of COCs (Q3–Q7)	Optimization of polymer functionalization that affords COC AEMs with IEC = 1.5–2.5 mequiv./g	
COC AEM Synthesis - Go/No-Go decision (Q4)		Demonstration of polymer AEMs that satisfy 50% of metric IDs 1 through 6	
Milestone 2	Reinforced Composite Membrane (Q3–Q7)	Fabrication of reinforced membranes with targeted thickness levels (25, 20, 15 mm)	
Milestone 3	Ex-situ Membrane Characterization (Q3–Q7)	Development of reinforced AEMs with IEC = 1.5– 2.5 mequiv./g.	
Milestone 4.1	Ionomer-hydrogen oxidation catalyst interface (Q2–Q4)	The RDE experiments will be performed using COC thin film coated HOR catalyst electrodes.	
Milestone 4.2	Ionomer-oxygen reduction catalyst interface (Q3–Q5)	The RDE experiments will be performed using COC thin film coated ORR catalyst electrodes	
Milestone 5.1	MEA fabrication and fuel cell performance test (Q5–Q8)	AEM fuel cell peak power density > 1 W/cm ² for a MEA employing COC AEM and low PGM or non-PGM loading catalysts (< $0.1 \text{ mg}_{\text{Pt}}$ /cm ²).	
Milestone 5.2	AEM and AEM fuel cell durability (Q6–Q8)	ASR after 1000 h AEMFC operation at \geq 60°C and constant current condition (0.6 A/cm ²): \leq 0.06 W cm ² .	

Accomplishments: Synthesis of COCs (M1.1)

- Ethylene-phenylnorbornene copolymer (62 wt% PhNB)
 was successfully synthesized using Zr catalyst.
 - Activity : 3.12 x 10⁶ g/mol·h

Accomplishments and Progress: Responses to Previous Year Reviewers' Comments

This project started on January 2019, and it was not reviewed last year.

Collaborations – Project team

Chulsung Bae

RPI

- Polymer synthesis

- Scale-up optimization
- Ex-situ membrane characterization

Xergy

Bamdad Bahar

Reinforced membranes
 Ex-situ membrane
 characterization

Rensselaer

LANL

Yu Seung Kim

- MEA fabrication
- Fuel cell performance test

• Los Alamos NATIONAL LABORATORY EST. 1943

Remaining Challenges and Barriers

- Synthesis of COC AEMs
 - Optimization of copolymerization and Scale up synthesis
 - Synthesis of COC AEMs with high anion conductivity and high durability

- Fabrication of reinforced composite membranes
 - Compatibility of COC AEMs with porous support materials
 - Production of robust ultra-thin composite membrane

Proposed Future Work

Remainder of FY 2019

- Synthesis of COC AEMs (RPI)
 - Ethylene phenylnorbornene copolymerization with various composition (10-40 mol% PhNB)
 - Friedel-Crafts bromoalkylation of COCs (30–90% DF of phenyl ring of COC)
 - Synthesis of COC AEMs with IEC = 1.5–2.7 mequig./g
 - Fabrication of reinforced composite membranes (Xergy)
 - Demonstration of COC AEMs composite membranes that satisfy Q4 Metrics
 - MEA fabrication and fuel cell performance test (LANL)
 - Preparation of soluble ionomer dispersions and catalyst ink
 - Investigation of catalyst layer and AEM compatibility
 - Measurement of alkaline membrane fuel cell performance using 1st year COC AEMs

Any proposed future work is subject to change based on funding levels.

Proposed Future Work

FY 2020

- Synthesis of COC AEMs (RPI)
 - Synthesis of COC AEMs with IEC = 1.5–2.7 mequig./g
 - Ex-situ membrane characterization.
- Fabrication of reinforced composite membranes (Xergy)
 - Demonstration of COC AEMs composite membranes that satisfy Q8 Metrics
 - Scale-up r2r fabrication process for ultra-thin, ultra-strong and ultra high-performance COC
 AEMs composite membranes
- MEA fabrication and fuel cell performance test (LANL)
 - Electrode optimization of alkaline membrane fuel cell performance using 2nd year COC AEMs
 - Measurement of alkaline membrane fuel cell stability using COC AEMs

Any proposed future work is subject to change based on funding levels.

Technology Transfer Activities

- Team has Initiated a joint venture between RPI (Chulsung Bae) and Xergy Inc., and established Orion Polymer Corp. to supply research grade ionic polymers and membranes samples (both free-standing and reinforced) to clients. Orion will seek license agreement from RPI for the scale-up synthesis of COC ionic polymers.
- Xergy Inc. will initiate discussions with 3rd party companies regarding commercial product sales.
- RPI and Xergy have joint IPs on composite membranes
- Manufacturing scale-up
 - RPI and Xergy have had membrane scale-up activities supported by DOE ARPA-E, STTR, EERE programs
 - Xergy has two roll-to-roll composite membrane production lines

Summary

- **Objective:** Development of high-performance, low-cost AEMs by synthesis of a series of quaternary ammonium-functionalized cyclic olefin copolymers (COCs) and impregnation using reinforcement technology.
- Approach: Development of COCs with tunable backbone rigidity. Incorporating alkyl chain-tethered cations of different structures to the polymer by simple post-functionalization method. Impregnating ionic polymers into a mechanically stable matrix (reinforced AEM). Demonstrating the membranes' performance and durability in fuel cells using Pt-base and precious group metal-free (PGM-free) catalysts

Accomplishments:

Ethylene-phenylnorbornene copolymer (62 wt% PhNB) was successfully synthesized using Zr catalyst (*Activity : 3.12 x 10⁶ g/mol·h*)

Collaborations:

We have a diverse team of researchers including national lab, university, and industry. **Rensselaer Polytechnic Institute:** Synthesis and characterization of ionic polymers **Xergy Inc.:** Reinforced composite membrane fabrication and characterization.

Los Alamos National Laboratory: MEA fabrication and fuel cell performance test.