

Advanced AEMs with Tunable Water Transport for PGM-Free AEMFCs

PI - Michael Hickner, Penn State University

co-Pls - William Mustain, University of South Carolina Bryan Pivovar, NREL

Michael Yandrasits, 3M Corporation

Project ID # FC308

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and Budget

- Project Start Date: 10/01/18
 Agreement authorized 12/17/2018
- Project End Date: 09/30/20
- Total Project Budget: \$1,278,452
 - Total Federal Share: \$1,000,000
 - Total Recipient Share: \$278,452
 - Total DOE Funds Spent*: \$165,068
- * As of 3/01/19

Barriers

- A. Durability focused on demonstrating moderate durability of AEMFCs based on understanding of water transport
- B. Cost enabling AEMFCs will lower the cost of the catalysts and the membranes
- C. Performance understanding water transport is key to high performance AEMFCs

Funded Partners

- Penn State University
- University of South Carolina
- National Renewable Energy Laboratory
- ✤ 3M Corporation

Relevance

Objectives: Over the course of this 24-month program, our team will:

- Develop novel poly(olefin) AEM chemistries with tunable water transport. In order to facilitate high AEMFC performance, they will have the following properties:
 - OH⁻ conductivities greater than 60 mS/cm at 60 °C, 100 % RH
 - Less than 10% degradation in conductivity after 5000 hours in 1 M NaOH at 60 °C and 2000 hours in 1 M NaOH at 80 °C
 - Water diffusion coefficient > 5*10⁻⁶ cm²/s (50% improvement over existing AEMs)
- Incorporate these novel ionomers into mechanical supports and integrate the resulting membranes into AEMFCs. During operation inside the AEMFC, the membranes will have:
 - ASR values less than 100 mOhm·cm² over 2000 hour operation
 - Water flux greater than 2*10⁻⁵ mol H₂O/cm²·s in order to be able to back-diffuse 80% of produced + electro-osmotic water from anode to cathode @ 600 mA/cm²

• Demonstration of all of the following DOE metrics in a single MEA with H_2/O_2 fuel:

- Greater than 2000 hours of AEMFC operation at 600 mA/cm²
- Operating voltage greater than 0.6 V with less than 10% decay over 2000 hours
- Operating T \ge 60 °C and P \le 1.5atm_a with PGM loading less than 0.125 mg_{PGM}/cm²

Approach

Focus on improved water management in AEMFCs

Synthesize new polyolefin-based membranes with high water diffusion coefficients (2x of current AEMs, >5*10⁻⁶ cm²/s by PFG-NMR) and thicknesses of ~ 20 microns using support structures.

- Optimize electrode formulation to pair with new membranes using current state-of-the-art knowledge on AEMFC electrodes.
- Control cell conditions and measure water balance to develop a full understanding of how water transport influences cell performance and durability.
- Use neutron radiography and cell water balance measurements to develop water transport-durability correlations.

Major Milestones and Go/No-Go

Month/Quarter

Performance Milestone	AEMFC steady-state operation at 600 mA/cm ² . Cell Voltage > 0.6 V. H ₂ /O ₂ reacting gases; Cell T ≥ 60°C; Pressure ≤ 1.5 atm _a
Go/No-Go	500h AEMFC operation at 600 mA/cm ² . Cell Voltage > 0.6 V. Anode/Cathode feed gas: H_2/O_2 ; Cell T ≥ 60°C; Anode/Cathode pressure ≤ 1.5 atm _a
Performance Milestone	500 h AEMFC operation at 600 mA/cm ² . Cell Voltage > 0.6V. Anode/Cathode feed gas: H_2/O_2 ; Cell T ≥ 60°C; Anode/Cathode pressure ≤ 1.5 atm _a . Total MEA PGM loading ≤ 0.125 mg/cm ² . 5 cm ² active area
Progress Measure	500h AEMFC operation at 600 mA/cm ² . Cell Voltage >6V. H ₂ /Air(CO ₂ -free); Cell T ≥ 60°C; Anode/Cathode Pressure ≤ 1.5 atm _a
Performance Milestone	AEMFC steady-state operation at 600 mA/cm ² with cell voltage > 0.6 V. H ₂ /Air (400 ppm CO ₂) feed gases; Cell T ≥ 60°C; Anode/Cathode pressure ≤ 1.5 atm _a
End-of-Project Goal	2000 h AEMFC continuous operation at 600 mA/cm ² . Cell Voltage > 0.6 V, less than 10% voltage fade. Anode/Cathode feed gases: H_2/O_2 ; Cell T ≥ 60°C; Anode/Cathode pressure ≤ 1.5 atm _a ; Total MEA PGM loading ≤ 0.125 mg/cm ² ; 50 cm ² active area.
	MilestoneGo/No-GoPerformance MilestoneProgress MeasurePerformance MilestoneEnd-of-Project

Current status: Can achieve M6 performance metrics with first-generation membranes. Currently working on measuring membrane water diffusion coefficients and optimizing supported membranes. Will begin lifetime testing in M7.

Accomplishments and Progress: Polymer Synthesis

M3/Q1	Membrane Milestone	≥ 2 AEM compositions with conductivity greater than 40 mS/cm at 60 °C in liquid water and water diffusion coefficient greater than 2*10 ⁻⁶ cm ² /s fabricated and delivered for cell testing
M3/Q1	Progress Measure	≥ 2 ionomer dispersions/powder samples sent to USC/NREL for cell testing

Accomplishments and Progress: Polymerization Batches

Control AEM – 3 batches	M.W.	eq	mass (g)		
11-bromo-1-undecene		233.19	1	1.063	
4-phenyl-1-butene		132.20	2	3.52	
TiCl3·AA 75%		198.72		0.05	
		1 mL/mg			
AlEt ₂ Cl pure		120.56 TiCl3			
Toluene (anhydrous)			50 m	۱L	
Novel AEM – Low IEC – 2 batches	N.4. 14/	22			
	M.W.	eq	mass		
11-bromo-1-undecene		233.19	1	2	
5-vinyl-1-norbornene		120.19	5	5.2	
TiCl3·AA		198.72		0.05	
		1 mL/mg			
AlEt ₂ Cl 1.0 M in hexanes		120.56 TiCl3			
Toluene (anhydrous)			50 m	50 mL	
Novel AEM – High IEC – 3 batches	M.W.	eq	mass	; (g)	
11-bromo-1-undecene		233.19	1	2	
5-vinyl-1-norbornene		120.19	5	5.2	
TiCl3·AA		198.72		0.05	
		1 mL/mg			
AlEt ₂ Cl 1.0 M in hexanes		120.56 TiCl3			
Toluene (anhydrous)			50 r	nL	

Current status: Working on supported membranes with larger polymer batches. More samples being sent to project partners.

- Over 80 polymerization batches conducted.
- 8 successful, on target batches shown at left.
- ✤ Yields approaching 60 %
- IECs between 1.5 and 12.5 meq/g targeted.
- Membrane IEC, conductivity, water transport, and stability currently being measured.
- 4 g batch of polymer shown below. Increasing scale currently.

Accomplishments and Progress: Cell Testing Demonstrations

- Powdered ionomer in electrodes
- Cathoode: 0.50 mg_{Pt}/cm² Alfa Aesar HiSPEC 4000, Pt nominally 40%wt., supported on Vulcan XC-72R carbon
- Anode: 0.70 mg_{Pt-Ru}/cm² Pt-Ru catalyst (Alfa Aesar HiSPEC 10000, Pt nominally 40%wt., and Ru, nominally 20%wt., supported on Vulcan XC-72R carbon
- ♦ 60 °C cell temperature, H₂/O₂ reacting gases at 1.0 L/min.

Current status: Membrane testing for durability in progress to meet next milestone. Electrode work in progress to meet project goals.

Responses to Previous Year Reviewers' Comments

✤New project commenced in late 2018.

Project not reviewed last year.

Collaboration & Coordination

Project collaborators:

- Prime Penn State University
- Sub Recipients
 - University of South Carolina
 - □ National Renewable Energy Laboratory
 - □ 3M Corporation
- University of South Carolina is responsible for electrode formulation, cell testing, and water transport studies – including neutron radiography
- National Renewable Energy Laboratory is responsible for lifetime testing and water balance studies
- Solution 3 States and Supported Membranes
- Coordination is performed through regular meetings and teleconferences. All project partners have worked together previously and have joint publications.

Science. Applied to Life.

Remaining Challenges and Barriers

Need larger-scale polymer synthesis for coating and supported membranes. Working with vinyl norbornene and single cations to keep synthesis simple.

- Larger-scale samples will enable more lifetime testing and neutron radiography studies of water transport.
- Lifetime still needs to be proven out at lower loadings to meet Year 1 Go/No-Go.
- Electrode formulation, membrane thickness, and water transport studies will enable a wholistic understanding of how water transport in the cell influences performance and durability.

Proposed Future Work

Rest of this year - FY19

- Synthesize larger-scale batches of polymer with vinyl norbornene motif and fabricate supported membranes.
- Continue to optimized electrode structures and cell conditions to meet milestones and Year 1 Go/No-Go on performance and durability at required loadings.
- Measure water transport in membranes using PFG-NMR and connect to cell water transport observations using water balance measurements.

✤ Next year - FY20

- Fabrication of high-performance supported membranes and optimization of electrode structures and cell conditions will allow for progress on Year 2 milestones.
- Develop strategies for increasing durability through modifying cell water transport.
- Develop wholistic picture of water transport in AEMFCs using neutron radiography.
- Risk will be mitigated by taking advantage of state-of-the-art catalyst for alkaline membranes that are reported.
- Major risks will be to approach required catalyst loadings while still reaching durability targets.

Any proposed future work is subject to change based on funding levels. 12

Technology Transfer Activities

3M and Penn State have filed joint IP under past programs. Considering joint IP on new material composition for this work.

Summary Slide

- Key early data indicates success in achieving performance metrics. Still catalyst layer work and cell conditions to optimize for meeting loading and durability targets.
- We have demonstrated 100s of hours of lifetime at 600 mA/cm² with previous polyolefin membranes in a collaboration between Penn State and U. South Carolina. Working to solidify the lifetime testing on current membranes with lower catalyst loadings.
- Larger scale synthesis is underway and will enable more membrane coating studies and lifetime testing.
- Work underway to meet Year 1 Go/No-Go.

M12/Q4 Go/No-Go

500h AEMFC operation at 600 mA/cm². Cell voltage > 0.6V. Anode/Cathode feed gas: H_2/O_2 ; Cell T ≥ 60°C; Anode/Cathode pressure ≤ 1.5 atm_a