# ILBCP-IL Composite Ionomers for High Current Density Performance

FC309

## PI: Joshua Snyder

## Team: Yossef Elabd, Anusorn Kongkanand, Kenneth Neyerlin, Maureen Tang

April 29, 2019



This presentation does not contain any proprietary, confidential, or otherwise restricted information



# Overview

## Timeline

- Project start date: Oct. 2018
- Project end date: Dec. 2020
- Percent Complete: 7%

## Budget

- FY2019 Funding: \$608,029
- Total Project Funding: \$1,244,115
- Cost Share: \$250,380 (20.5%)

## **Technical Barriers**

- O<sub>2</sub> transport through ionomer films
- Ionomer adsorption on catalyst
- Inaccessible catalyst in porous carbon
- Distribution and retention of IL in catalyst layer
- Humidity tolerance at HCD

#### Partners

- Drexel: Maureen Tang
- Texas A&M: Yossef Elabd
- General Motors: Anusorn Kongkanand
- NREL: K.C. Neyerlin



# Relevance

## **Primary Technical Barriers**

- $\Box$  O<sub>2</sub> transport through ionomer thin films
- Ionomer specific adsorption onto catalyst
- Inaccessible catalyst in porous carbon supports
- Distribution and retention of IL in catalyst layers
- □ Humidity tolerance at HCD (Pt utilization)











# Relevance

#### Objective:

The goal of this project is to develop a *polymerized ionic liquid block co-polymer/ionic liquid* (PILBCP/IL) composite ionomer to replace traditional PFSA-based ionomers and address their associated limitations. The expected outcomes include: (1) development of a cathode that meets DOE targets for low and high current density, and (2) improved understanding of how interface engineering affects HCD performance

| Metric                                    | Units                           | PtCo/KB | IL-PtCo/KB | DOE<br>2020<br>Target | Project<br>Target |
|-------------------------------------------|---------------------------------|---------|------------|-----------------------|-------------------|
| PGM total loading (both electrodes)       | mg/cm <sup>2</sup>              | 0.125   | 0.085      | <0.125                | ÷                 |
| Mass activity @ 900 mV <sub>iR-free</sub> | A/mg <sub>PGM</sub>             | 0.6     | 0.6        | >0.44                 | ÷                 |
| Loss in catalytic (mass) activity         | % loss                          | 30%     | -          | <40%                  | ÷                 |
| Performance at 0.8V (150kPa, 80°C)        | A/cm <sup>2</sup>               | 0.30    | 0.31       | >0.3                  | ÷                 |
| Power at rated power (150kPa, 94°C)       | W/cm <sup>2</sup>               | 0.80    | -          | >1.0                  | ÷                 |
| Power at rated power (250kPa, 94°C)       | W/cm <sup>2</sup>               | 1.01    | 1.05       | -                     | >1.2              |
| PGM utilization (150kPa, 94°C)            | kW/g <sub>PGM</sub>             | 6.4     | -          | >8                    | ÷                 |
| PGM utilization (250kPa, 94°C)            | kW/g <sub>PGM</sub>             | 8.1     | 10         | -                     | >9.1              |
| Catalyst cycling (0.6-0.95V, 30k cycles)  | mV loss at 0.8A/cm <sup>2</sup> | 24      | -          | <30                   | ÷                 |



# Approach

Task 1: Development of PILBCP/IL Ionomer

FY2019 Q1-Q4

- PILBCP synthesis
- IL synthesis and screening
- Nafion and [MTBD][beti] baseline establishment
- In-situ/ex-situ screening of PILBCP/IL thin films
- Create IL property and performance database

**Go/No-Go:** >1.0 W/cm<sup>2</sup> at 250 kPa in 25 cm<sup>2</sup> MEA with two different PILBCP/IL chemistries

Task 2: MEA Performance and Durability

FY2020 Q5-Q8

- Catalyst ink formulation and rheology
- Capacitive deposition of IL
- Ex-situ ion and gas transport measurements through PILBCP/IL
- Composite ionomer loading effects
- In-situ Pt utilization: Vulcan vs. HSC
- MEA level ionomer and catalyst durability
- Limiting current for proton and oxygen transport

**Project End Goal:** >1.2 W/cm<sup>2</sup> at 250 kPa in 50 cm<sup>2</sup> MEA, <10% power loss after AST



## Approach

| PILBCP-IL Composite Ionomers for High Current Density Fuel Cell Performance                |                |    | 20  | )19   |      | 2  |     | )20   |         |
|--------------------------------------------------------------------------------------------|----------------|----|-----|-------|------|----|-----|-------|---------|
| DE-FOA-0001874 Topic 3A-4 Ionomer (Control #: 1874-1642)                                   |                | Q1 | Q2  | Q3    | Q4   | Q5 | Q6  | Q7    | Q8      |
|                                                                                            |                |    |     |       |      |    |     |       |         |
| Task                                                                                       | Team           |    |     |       |      |    |     |       |         |
|                                                                                            |                |    | 1   |       |      |    |     |       |         |
| Program Timeline                                                                           |                |    |     |       |      |    |     |       |         |
| Program Start Date                                                                         |                |    |     |       |      |    |     |       |         |
| Quarterly Report and Milestones                                                            |                |    |     |       |      |    |     |       |         |
| Yearly Go/No-Go Decision                                                                   |                |    |     |       |      |    |     |       |         |
| Annual Program Review                                                                      |                |    |     |       |      |    |     |       |         |
| Final Report                                                                               |                |    |     |       |      |    |     |       |         |
|                                                                                            |                |    |     |       |      |    |     |       |         |
| Phases (Budget Periods)                                                                    |                |    |     |       |      |    |     |       |         |
| Phase 1: PILBCP/Ionic Liquid Composite Ionomer Development                                 |                | Ph | ase | 1 (BF | ° 1) |    |     |       |         |
| Phase 2: High Current Density Performance and Stability with PILBCP/IL Compositie Ionomers |                |    |     |       |      | Ph | ase | 2 (BI | 2)<br>' |
|                                                                                            |                |    |     |       |      |    |     |       |         |
| Task 0 - Program Managament and Planning                                                   |                |    |     |       |      |    |     |       |         |
| 0.1 Project Kick-off Meeting                                                               | All            |    |     |       |      |    |     |       |         |
| 0.2 Project Management, Planning, Review, and Reporting                                    | All            |    |     |       |      |    |     |       |         |
| 0.3 Final Report and Review Meeting                                                        | All            |    |     |       |      |    |     |       |         |
| Task 1 - Development of PILBCP/IL Composite Ionomer                                        |                |    | 1   |       |      |    |     |       |         |
| 1.1 Materials Development                                                                  |                |    |     |       |      |    |     |       |         |
| 1.1.1 PILBCP Ionomer Synthesis                                                             | TAMU           |    |     |       |      |    |     |       |         |
| 1.1.2 IL Screening and Synthesis                                                           | Drexel         |    |     |       |      |    |     |       |         |
| 1.2 Characterization                                                                       |                |    |     |       |      |    |     |       |         |
| 1.2.1 Establish Baseline with Nafion/[MTBD][beti] and Pt                                   | Drexel/GM/NREL |    |     |       |      |    |     |       |         |
| 1.2.2 Ex-situ Screening of PILBCP/IL Composite Thin Films                                  | Drexel/TAMU    |    |     |       |      |    |     |       |         |
| 1.2.3 In-situ Characterization                                                             | NREL/GM        |    |     |       |      |    |     |       |         |
| Task 2 - Composite PILBCP/IL MEA Performance and Stability                                 |                |    | 1   |       |      |    |     |       |         |
| 2.1 Materials Development                                                                  |                |    |     |       |      |    |     |       |         |
| 2.1.1 Catalyst Ink Formulations and Rheology                                               | NREL/TAMU      |    |     |       |      |    |     |       |         |
| 2.1.2 Capacitive Deposition of IL                                                          | Drexel/TAMU    |    |     |       |      |    |     |       |         |
| 2.2 Ex-situ Characterization: Transport through PILBCP/IL Composites                       | Drexel         |    |     |       |      |    |     |       |         |
| 2.3 In-situ Characterization                                                               |                |    | 1   |       |      |    |     |       |         |
| 2.3.1 PILBCP/IL Loading Effects                                                            | NREL/GM        |    |     |       |      |    |     |       |         |
| 2.3.2 Pt Utilization: Vulcan vs. High Surface Area Carbon                                  | NREL/GM        |    | 1   |       |      |    |     | _     |         |
| 2.3.3 Composite Ionomer and Catalyst Durability at OCV and AST                             | GM             |    |     |       |      |    |     |       |         |
| 2.3.4 Limiting Current for Proton and Oxygen Transport                                     | NREL           |    |     |       |      |    |     |       |         |



# Collaboration





## Concept



#### Polymerized Ionic Liquid Block Copolymer (PILBCP)



#### Ionic Liquid (IL)



- □ IL interphase:
  - 1. Improved ORR
  - 2. Low humidity proton conduction
  - 3. Limited specific adsorption
- □ PILBCP polymer:
  - 1. IL domain improves interaction with IL interphase, decreasing interfacial resistances
  - 2. Improved retention of IL interphase
  - 3. Sulfonated domain is H<sub>3</sub>O<sup>+</sup> transport block
  - 4. Domain organization in the absence of PFSA



### Accomplishments and Progress: Previous EERE Results - FC144



#### Proton Accessibility



- MEA performance improvement due primarily to higher ORR activity in presence of [MTBD][beti]
- Humidity tolerance is improved in presence of protic IL. Utilization of internally located Pt in porous carbons at low humidity is enhanced due to anhydrous protonic conductivity of ILs



### Accomplishments and Progress: Previous EERE Results – FC144



- Presence of IL thin film on Pt/V and Pt/HSC leads to significant improvements in ECSA retention during RDE AST (0.6-0.95 and 0.6-1.1 V vs. RHE)
- Hydrophobicity and low metal IL solubility of IL decrease Pt dissolution during RDE AST

Pt/HSC 10k cycles 0.95 V UPL



Pt/HSC+IL 10k cycles 0.95 V UPL





### Accomplishments and Progress: Previous EERE Results – FC144



- IL thin films on Pt/V and Pt/HSC result in significant improvements in intrinsic ORR activity of Pt
- □ Specific and mass activity measured at 0.9 V vs. RHE



### Accomplishments and Progress: Capacitive Deposition of IL

**A** 



**S** 



Alternating potential and electrolyte composition sequentially attracts and condenses IL thin films on conductive electrodes



¢,

### Accomplishments and Progress: Capacitive Deposition of IL



REXEL UNIVERSITY

Engineering

College of



- □ Applied potential, immersion time, and electrolyte composition control IL thickness
- Conformal coating ensures complete coverage in 3D catalyst layers and limits pore blockage, minimizing impact on reactant transport

### Accomplishments and Progress: Nafion Specific Adsorption on Pt(111)





## **Future Work**

- □ Synthesis and ex-situ/half-cell screening of PILBCP and IL
- Establish property and performance baseline for Nafion/[MTBD][beti]
- □ Create database for ORR performance and general IL properties for a range of IL chemistries
- Develop testing protocol for ex-situ measurement of gas and ion transport properties of PILBCP/IL composite thin films
- Further develop methodology for conformal integration of IL thin films into threedimensional catalyst layers
- □ Catalyst ink rheological optimization for non-PFSA based ionomer
- □ In-situ MEA testing: performance, diagnostic, durability
- □ Ionomer loading and carbon morphology effects

Any proposed future work is subject to change based on funding levels



## **Future Work**





CharacterizationM1.1Subtask 1.2M1.3• Establish baseline with<br/>Nafion/[MTBD][beti]M1.4• Microelectrode screening of<br/>PILBCP/IL composite thin films

o In-situ characterization

GNG1: Demonstrate >1.0 W/cm<sup>2</sup> at 250 kPa in 25 cm<sup>2</sup> MEA with two PILBCP/IL chemistries

M1.2: Demonstrate 20% ORR improvement with ILs

M1.1: Demonstrate half-cell and microelectrode testing protocols, establish baseline

- M1.3: Identify/characterized three PILBCP/IL chemistries for MEA testing
- M1.4: Validate ex-situ O<sub>2</sub> perm and ORR with MEA testing



## **Future Work**





### Future Work: Ex-Situ Transport Measurements





- □ Separate interfacial kinetics and transport with precise control of electrode geometry
- □ Steady-state established at microscale electrodes
- Measurement of ionic and reactant transport through PILBCP, IL, and PILBCP/IL composite thin films
- Deconvolution of general and interfacial resistances in composite thin films





### Future Work: PILBCP Synthesis



- □ Advantages of PILBCP ionomers
  - 1. High proton conductivity
  - 2. Low degree of swelling
  - 3. Favorable  $D_{0_2}/C_{0_2}$

- 4. Enhanced humidity tolerance
- 5. Optimal interface with IL interlayer
- 6. Broad library of IL chemistries



Future Work: PILBCP Synthesis





## Summary

#### PILBCP Composite Ionomers

- 1. Improved ORR
- 2. Low humidity proton conduction
- 3. Limited specific adsorption
- 4. IL domain improves interaction with IL interphase, decreasing interfacial resistances
- 5. Improved retention of IL interphase
- 6. Sulfonated domain is H<sub>3</sub>O<sup>+</sup> transport block
- 7. Domain organization in the absence of PFSA

#### Technical Targets

| Metric                                    | Units                  | PtCo/KB | IL-PtCo/KB | DOE<br>2020<br>Target | Project<br>Target |
|-------------------------------------------|------------------------|---------|------------|-----------------------|-------------------|
| PGM total loading (both electrodes)       | mg/cm <sup>2</sup>     | 0.125   | 0.085      | <0.125                | ÷                 |
| Mass activity @ 900 mV <sub>iR-free</sub> | A/mg <sub>PGM</sub>    | 0.6     | 0.6        | >0.44                 | ÷                 |
| Loss in catalytic (mass) activity         | % loss                 | 30%     | -          | <40%                  | ÷                 |
| Performance at 0.8V (150kPa, 80°C)        | A/cm <sup>2</sup>      | 0.30    | 0.31       | >0.3                  | ÷                 |
| Power at rated power (150kPa, 94°C)       | W/cm <sup>2</sup>      | 0.80    | -          | >1.0                  | ÷                 |
| Power at rated power (250kPa, 94°C)       | W/cm <sup>2</sup>      | 1.01    | 1.05       | -                     | >1.2              |
| PGM utilization (150kPa, 94°C)            | kW/g <sub>PGM</sub>    | 6.4     | -          | >8                    | ÷                 |
| PGM utilization (250kPa, 94°C)            | kW/g <sub>PGM</sub>    | 8.1     | 10         | -                     | >9.1              |
| Catalyst cycling (0.6-0.95V, 30k cycles)  | mV loss at<br>0.8A/cm² | 24      | -          | <30                   | ÷                 |



## Acknowledgements

#### DOE

- Greg Kleen
- Thomas Nucci
- Dan Berteletti
- Nicholas Oscarsson

#### Texas A&M

- Yossef Elabd

#### NREL

- Kenneth Neyerlin

#### GM

- Anusorn Kongkanand

#### Drexel

- Maureen Tang









