

High-Efficiency Reversible Alkaline Membrane Fuel Cells

Hui Xu (PI) and Zach Green Giner, Inc. Newton, MA

2019 DOE Hydrogen and Fuel Cells Annual Merit Review

April 29th 2019

Project ID # FC315

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: October 1, 2018 Actual start date: January 1, 2019
- Project End Date: December 31, 2020

Budget

- Overall \$1,250.139
 - DOE share \$799,503
 - Cost share \$250,636
 - FFRDC \$200,000 to NREL
- \$9089 spent as of 3/1/2019

Barriers Addressed

- A: Cost
- **B**: Durability
- C: Performance

Partners

- Giner, Inc. Project lead
- Collaborations:
 - University at Buffalo (UB)
 - University of Delaware (UD)
 - National Renewable Energy Lab (NREL)

Relevance

Overall objectives:

- Explore oxidation-resistant anion exchange membranes/ionomers and corrosion-resistant bifunctional catalysts
- Demonstrate prototyped reversible alkaline membrane fuel cell with >50% round trip efficiency at 1000 mA/cm²

Reversible fuel cells can store renewable energy like batteries, but with much higher energy density
 Alkaline membrane system may lead to low capital cost due to adopted cheap materials (catalysts, bipolar plates)

Technical Approaches

Reversible Anion Exchange Membrane (AEM) Fuel Cells

Bifunctional catalysts for hydrogen oxidation reaction (HOR) /hydrogen evolution reaction (HER)

Bifunctional catalysts for oxygen reduction reaction (ORR) /oxygen evolution reaction (OER)

Performance Tasks

Task 1 Membrane and Ionomer Development

- Develop alkaline ionomers
- Impregnate ionomers into dimensionally-stable membranes (DSM)

Task 2 Catalyst Preparation

- Prepare bifunctional HOR/HER and ORR/OER catalysts
- Low PGM (baseline) and PGM-free catalysts

Task 3 MEA Design and Fabrication

- Optimize interactions of catalyst, ionomer and membrane
- MEA water management

Task 4 Reversible Fuel Cell Test

- Charge-discharge operations
- Salt addition Impact

Task 5 Techno-economical Analysis

- Capital cost
- Operation efficiency and cost

Task 1: AEM Preparation

- Current commercial alkaline membranes cannot sustain electrolysis conditions due to possible degradation under high oxidative voltage
- □ A family of poly(aryl piperidinium) (PAP) membranes has been developed at the University of Delaware
 - Highly conductive for hydroxide ions
 - Chemically stable
 - Mechanically robust

Work plan for this task:

- Prepare and characterize benchmark
 PAP membranes with varying IEC
- Synthesize piperidinium monomers and PAP-TP-TMP polymer
- Oxidation resistance study
- Prepare and characterize reinforced membranes

 $\label{eq:main_state} TMA = tetramethylammonium \ DMPy = dimethylpyrrolidinium \ DMP = dimethylpyrrolidinium \ PTM = propyltrimethylammonium \ HTM = hexytrimethylammonium \ MTPP = trimethyphenylphosphonium \ IM = imidazolium \ (Ph)_4P = tetraphenylphosphonium \ BTM = benzyltrimethylammonium \$

University at Buffalo NIVERSITY

Task 2-1: Bifunctional Oxygen Catalysts

Challenges of bifunctional catalysts:

- Theoretically, no single type of active site for both ORR and OER
- Overcome large overpotential for both reactions simultaneously
- Instability of most carbon based ORR catalysts in OER potential regime

Previously, NiCo₂O₄ with nanoflower morphology showed best ORR-OER activity and good stability⁸

Task 2-2: Bifunctional Hydrogen Catalysts

- □ Investigating several low-PGM HER/HOR routes
- Work at NREL has shown increased mass activity through galvanic displacement, hydrogen annealing of Pt-Ni materials
- Nano-particulate molybdenum disulfide (MoS₂) has also demonstrated remarkable HER activity
 - By ball-milling with small amounts of platinum for hydrogen oxidation, a low-PGM bifunctional HOR/HER catalyst can be synthesized

S. M. Alia, B. A. Larsen, S. Pylypenko, D. A. Cullen, D. R. Diercks, K. C. Neyerlin, S. S. Kocha and B. S. Pivovar, ACS Catalysis, 4, 1114 (2014). DOI:10.1021/cs401081w

Task 3: MEA Design and Fabrication

- □ Interactions between catalyst, membrane and ionomer need to be optimized
- Water management is a concern with AEMs; slight adjustments to reactant gas dew points can drastically affect performance
- The application of Giner's proprietary Water Management Membrane (WaMM) technology be investigated to build vapor-feed reversible AMFCs
- □ High temperature AEM can enable high temperature (>100 °C) operation thus easing water management

Time (hh:mm)

□ Impact of the addition of diluted salts

University at Buffalo

□ Impact of cell cycling frequency and current density

NIVERSITY

AWARF

Task 5: Techno-economical Analysis

Capital Cost

- Catalysts, AEMs, ionomer, and bipolar plates
- Size decided by current density
- Operating cost
 - Round trip efficiency
 - Electricity cost

Technical Approach: Milestones

- Milestone 1.1 Demonstrate 30-50 µm self-supporting membranes with conductivity >100 mS/cm (80 °C), tensile strength > 50 MPa, elongation at break > 100% June 2019
- Milestone 1.2 Deliver 400 cm² of PAP-TP-TMP membranes w/ superoxide disproportionation activity and 50 % improved oxidation resistance
 December 2019
- Milestone 1.3 Demonstrate PAP membranes and ionomers w/ half-life in KO₂/DMSO/D₂O 10x longer than commercial ionomer June 2020
- Milestone 1.4 Prepare reinforced PAP membranes with through-plane ASR < 0.15 Ohm cm², ≥60 MPa tensile strength, ≥150% elongation at break September 2020
- Milestone 2.1 15 g Co3O₄ or NiCoO₄ ORR/OER catalyst March 2019
- Milestone 2.2 Produce 5 g MoS₂/RGO HER catalyst September 2019
- Milestone 2.3 5 g chevrel-phase NiMo₃S₄ HER catalyst December 2019
- Milestone 3.1 Identify three most impactful parameters for reversible fuel cell electrode design and fabrication December 2019

Technical Milestones (Cont'd)

- Milestone 4.1 GO/NO GO Achieve a round trip efficiency of 50% at 500 mA/cm² in both fuel cell and electrolyzer modes December 2019
- Milestone 4.2 Achieve a degradation rate <1 % over 200 hours with operation in both fuel and electrolyzer modes March 2020
- Milestone 4.3 With a reversible AEM fuel cell MEA, achieve round trip efficiency of 40% at 400 mA/cm² with pure water as feedstock June 2020
- **Milestone 4.4** With a low-PGM reversible AEM fuel cell MEA:
 - Achieve round trip efficiency of 45% at 500 mA/cm² with pure water as feedstock, or
 - Achieve round trip efficiency of 50% at 600 mA/cm² with allowed salts in water feedstock September 2020
- Overall project goal Obtain reversible AEM fuel cell round trip efficiency of 50% @ 1000 mA/cm² December 2020

Collaboration & Coordination

Institutions	Roles
<u>Giner Inc. (Giner)</u> Hui Xu (PI), Zach Green	Prime, oversees the project; MEA design, optimization and fabrication; reversible fuel cell design; cost analysis
<u>University of Delaware (UD)</u> Yushan Yan	Anion exchange membrane and ionomer development
<u>University of Buffalo(UB)</u> Gang Wu	Bifunctional OER/ORR catalyst development
National Renewable Energy Laboratory (NREL) Bryan Pivovar and Shaun Alia	Bifunctional HOR/HER catalyst development

Proposed Future Work

Next steps for FY 2019

- □ Optimize electrode coating on AEMs
- Prepare HER/HOR and OER/ORR bifunctional catalysts
- Modify existing test instrumentation at Giner to enable reversible testing with dilute hydroxide solutions

Any proposed future work is subject to change based on funding levels

Summary

- Oxidation-resistant alkaline membranes and ionomers will be synthesized and characterized at the University of Delaware
- AEM materials will be integrated with bifunctional catalysts from SUNY Buffalo and NREL to enable reversible AEMFCs
- □ Giner's water management membranes will be used to mitigate flooding concerns during long-term AEM operation
- A reversible AMFC with >50% RTE at 1000 mA/cm² will be demonstrated without introducing any salts or bases in the aqueous feed

Acknowledgements

- Financial support from DOE EERE Fuel Cell Technologies Office, Incubator Program Award # DE-EE0006960
- DOE Program Managers
 Dr. David Peterson
- Giner Personnel
 - Corky Mittelsteadt, Zach Lynn and Zheng Wang