

Stationary Direct Methanol Fuel Cells Using Pure Methanol

PI and presenter: Xianglin Li / University of Kansas Co-PI: Gang Wu/ University at Buffalo Co-PI: Jun Li / Kansas State University Co-PI: Shawn Litster / Carnegie Mellon University Date: April 29, 2019

2019 DOE Hydrogen and Fuel Cells Program Review

Project ID # FC317

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>Timeline</u>

- Project Start Date: 10/01/2018
 - BP1: 10/1/2018 12/31/2019
 - BP2: 1/1/2020 12/31/2020
 - BP3: 1/1/2021 12/31/2021
- Effective Project Start Date: 01/03/2019
- Project End Date: 12/31/2021

Budget

- Total Project Budget: \$ 1,249,449
 - Recipient Share: \$ 250,050
 - Federal Share: \$ 999,399
- Planned funding for Budget Period 1: \$ 469,489
- Total DOE Funds Spent*: \$ 13,283.93
 * As of 3/1/2019

Barriers Addressed

- High platinum group metals (PGM) catalyst loading
- Catalyst poisoning by methanol
- High fuel crossover

Partners

PI : Xianglin Li University of Kansas (KU) Co-PI: Gang Wu University at Buffalo (UB) Co-PI: Jun Li Kansas State University (KSU) Co-PI: Shawn Litster Carnegie Mellon University (CMU)

Relevance/Impact

- <u>Objectives</u>: The goal of this collaborative research is to develop stationary direct methanol fuel cells (DMFCs) using pure methanol as the fuel.
- <u>Three critical challenges from material to system levels</u>:
 - (1) Reduce noble catalyst loading and cost;
 - (2) Enhance cathode tolerance of methanol poisoning;
 - (3) Decrease methanol crossover.
- <u>End of the Project Goal</u>: The MEA and prototype delivered at the end of the project (50 cm² MEA) will produce peak power density of \geq 300 mW/cm² with total loading of \leq 3 mgPGM/cm².
- <u>1st BP target (10/1/2018 12/31/2019)</u>: The fuel cell prototype to be delivered at the first year (25 cm² MEA) will meet the milestone of ≥ 250 mW/cm² with 4 mgPGM/cm².

Approach

This research integrates complementary *institutional expertise* on

- Platinum group metals free (PGM-free) cathode catalyst (UB);
- Supported anode catalysts (KSU);
- Electrode fabrication, characterization, and optimization (CMU);
- Multi-phase mass transfer (KU):

<u>to</u>

- (1) Reduce noble catalyst loading and cost;
- (2) Enhance cathode tolerance of methanol poisoning;
- (3) Decrease methanol crossover.

The technical progress made by the H₂ fuel cell R&D greatly benefit this project:

- The fabrication of advanced catalyst support materials;
- The design and development of PGM-free catalysts;
- The capability of electrode characterization and fabrication;
- The understanding of liquid-vapor mass transfer in porous electrodes.

Approach

The planned milestones and Go/No-Go decisions for FY19

	Milestone Description	Status
Q1	Develop a testing platform to control fuel cell temperature, fuel and cathode flow rates, and relative humidity (KU). Develop a system to sputter PtRu onto VACNFs and evaluate catalytic activities using RDE (KSU). Develop a system to synthesize PGM-free cathode catalysts and evaluate catalytic activities using RDE (UB). Set up the sample preparation system, MicroCT facility, and data processing platform. (CMU)	100% completion
Q2	The fuel cell with commercial MEAs achieves about 125 mW/cm ² peak power density with >3.0 M methanol solution (KU). Reconstruct nano-CT images of commercial electrodes (CMU). Establish correlation of RDE activity of pre-screened catalysts and MEA performance for DMFC (UB).	50% completion
Q3	Synthesize catalyst with $E_{1/2}$ >0.80 V using dilute methanol solution (UB). Synthesize PtRu catalyst on VACNFs and evaluate its anodic MOR catalytic activity in dilute methanol solution (KSU). Incorporate customized anode and cathode catalysts into electrodes and generate nano-CT images of electrodes (CMU). The fuel cell with customized MEAs achieves a peak power of 175 mW/cm ² with >3.0 M methanol solutions (KU&CMU).	20% completion
04	Go/No-GO Single cells with customized MEAs achieve a peak power of \geq	10%

Q4 $250 \text{ mW/cm}^2 \text{ with } \le 4 \text{ mg}_{PGM}/cm^2 \text{ using } >3.0 \text{ M} \text{ methanol solution.}$

completion

Accomplishments and Progress – Anode Catalyst Support

Initial VACNF growth was successful on several carbon cloth/paper with and without PTFE treatment.

Accomplishments and Progress - Cathode Catalysts

-0.05

0 2 4 6

10 12

14 16 18

Accomplishments and Progress – Cathode Catalysts

Accomplishments and Progress – Electrode Characterization

Xradia UltraXRM-L200 nano-CT

Schematic representation of nano-CT

•Two levels of resolution- (a) 50 nm resolution (16 nm pixels) for a 16 μm field of view & (b) 150 nm resolution (65 nm pixels) for a 65 μm field of view;
•Conventional absorption contrast imaging mode at 8 keV to generate the contrast by the X-ray absorptivity of the sample (a function the local atomic number and density)

•Zernike phase contrast mode to enhance imaging of low-contrast, soft materials (e.g., carbon and organic materials) with low Z.

The research team has a unique Nano-CT to measure the detailed pore-scale structures of fuel cell electrodes.

Carnegie Mellon

University

Accomplishments and Progress – Electrode Characterization

60 nm, I/C 0.6

10 µm

40 nm, I/C 1

Prior development of PGM-free cathodes Nano-CT: 3D Mapping of Cs+ stained Ionomer with Fe-MOF PGM-free catalyst in CMU's FC171 project
 Poor infiltration

and thick

films with

40 nm

- Optimized particle size and ionomer integration for repeatable, high air performance
- Applying CMU's PGM-free cathode design principles to DMFC cathode requirements

80°C, Air/H₂, 1.5 atm, 100% RH Current Density (A/cm2)

Primary particle size and ionomer loading should consider trade-offs between activity, conductivity, and mass transport.

Accomplishments and Progress – Fuel and Water Management

The fuel management is critical for the high-performance operation of fuel cells with concentrated methanol solutions

Accomplishments and Progress – Fuel and Water Management

The fuel cell models can help understand the liquidvapor two-phase flow within the MEA.

Collaboration and Coordination

Sub: Jun Li Kansas State University Anode Catalyst	Anode catalyst on vertically aligned carbon nanofibers with ultralow PGM loading.
Sub: Gang Wu University at Buffalo Cathode PGM-free Catalyst	Cathode catalyst: highly methanol-tolerant and low-cost PGM-free catalysts.
Sub: Shawn Litster Carnegie Mellon University Electrode characterization	Electrode fabrication, characterization and optimization using high- resolution X-ray CT imaging and simulation.
Prime: Xianglin Li University of Kansas	System integration and prototype development. Fuel and water management to enable DMFCs using pure methanol. $Methanol ChannelFuel Management Layer\uparrow the water back flow!\rarchannel\rarchannel\rarchannel\rarchannel\rarchannel\rarchannel\rarchannel\rarchannel\rarchannel\rarchannel\rarchannel\rarchannel\rarchannel$

Remaining Challenges and Barriers

Challenge:

- Performance of customized non-PGM catalysts and anode catalyst supports.
- Production scale-up of customized catalysts and catalyst supports for 25 cm² and 50 cm² MEAs;
- Fuel management of fuel cells running with highly concentrated methanol solutions or pure methanol.
- Development of accelerated stress test (AST) procedures for DMFC.

Planned Resolution:

- Select, design and synthesize catalysts and catalyst support materials based on successful progress made by hydrogen fuel cells research.
- Explore different methods for catalyst deposition: sputtering, microwaveassisted synthesis, atomic layer deposition, etc.
- Understand pore-scale liquid-vapor two-phase transfer assisted by advanced imaging technologies (micro- and nano-CT) and model simulations.
- Develop DMFC's AST by modifying established AST protocols for hydrogen fuel cells.

Technology Transfer Activities

This project just started at the beginning of the year, the research team is *planning* to carry out the following technology transfer activities during and beyond this project

- Feasibility studies and economic analyses of DMFCs:
 - Research on a few early market applications for DMFCs
 - Evaluate domestic and international markets to identify possible beneficiaries of the project's DMFC technologies
 - Identify key manufactures or fuel cell vendors for specific applications/markets
 - Carry out case studies or economic analyses
- Potential future funding
 - ARPA-E
 - NSF Partnerships for Innovation: Research Partnership
- Patent or potential licensing
 - Non-provisional patents on the new materials, electrode designs, fuel cell systems and their derivatives validated in this project will be filed.

Proposed Future Work

Remainder of FY19

- <u>Pre-screen PGM-free ORR catalysts</u>: Establish correlation of RDE activity several pre-screened catalysts and MEA performance for DMFC.
- <u>Synthesize high-performance PGM-free ORR catalysts</u>: Synthesize at least 5 g catalyst with E_{1/2}>0.80 V and a peak power of 250 mW/cm² using dilute (<3.0 M) MeOH.
- <u>Sputter PtRu onto VACNFs</u> and evaluate its anodic MOR catalytic activity in 3.0 M MeOH.
- *Measure pore-scale electrode structure* using nano-CT.
- <u>Develop liquid-vapor two-phase models</u> to simulate mass transfer coupled with reactions.
- <u>Manage fuel and water in fuel cells</u> to achieve 250 mW/cm² peak power density with ≤ 4 mgPGM/cm² (Go/No-Go #1).

Any proposed future work is subject to change based on funding levels.

Proposed Future Work FY20

- <u>Synthesize high-performance PGM-free ORR catalysts</u>: Synthesize 5 g catalyst with E_{1/2}>0.80 V and a peak power of 250 mW/cm² using >3.0 M MeOH.
- <u>Test PGM-free ORR catalysts stability and durability</u>: The catalyst has $E_{1/2}$ loss of <30 mV after 30K potential cycling 0.6-0.95 V in 3.0 M methanol.
- <u>Test anode catalysts in fuel cells</u>: The fuel cell obtains the maximum power density of 250 mW/cm² using <4 mgPGM/cm² in 3.0 M MeOH.
- <u>Develop electrochemical models</u> using reconstructed digital electrodes.
- *Optimize hierarchical particle size and electrode* based on reconstructed electrodes.
- <u>Develop two-phase pore-scale models</u> to simulate mass transfer coupled with reactions.
- The single cell achieves ≥ 250 mW/cm² peak power with ≤ 3 mgPGM/cm² (Go/No-Go #2).

Any proposed future work is subject to change based on funding levels.

Summary Slide

- The high energy content of liquid methanol (4.67 kWh/L) makes DMFC an ideal technology for stationary applications (1-25 kW).
- Since the start of the project, KU, KSU, UB, and CMU have all built capable research teams and setup the research platform as planned.
- The four participating research teams have worked closely with the program manager to share information, update progress, and discuss technical challenges and feasible plans to reach the project goal.
- The advanced catalyst support material as well as the PGM-free show promising performance and methanol tolerance in RDE/CV tests.

Carnegie Mellon University

Technical Backup Slides

Technical Backup Slides – Anode Catalyst Support

Aixtron PECVD system in Li lab, KSU

The research team has the equipment and experience to grow vertically aligned carbon nanofiber as the catalyst support.

Suppressed I_b/I_f indicates reduced carbonaceous deposit on Pt (at ~20-25 $\mu g/cm^2$) using VACNF as the catalyst support. The durability of Pt/VACNF is likely higher. Similar behavior observed at lower Pt loading (~10-13 $\mu g/cm^2$).

Technical Backup Slides

When methanol concentration is above 2M, PGM-free cathode performs better than PGM cathode

Technical Backup Slides – Electrode Characterization

Fe-MOF Catalyst with Different Primary Particle Sizes
•40 nm: Agglomerated primary particles and large fused aggregates
•60 nm to 100 nm: Less large agglomerates and more distinct primary particles
•600 nm: Few large agglomerates and more dispersed primary particles.

Carnegie Mellon

University

Technical Backup Slides – Fuel and Water Management

Preferred materials to regulate water and fuel in MEA:

- Strongly hydrophobic;
- High mass transfer resistance;
- Highly electric conductive;
- Thin and lightweight.

Performance in passive systems

Current density and temperature changes of a passive DMFC using pure methanol at 0.2 V and room temperature.

Sample structures with controllable open ratios