

MW-Scale PEM-Based Electrolyzers for RES Applications

Monjid Hamdan, Giner ELX (PI) Kevin Harrison, NREL Poster Session - April 30, 2019

DOE Hydrogen and Fuel Cells Program 2019 Annual Merit Review and Peer Evaluation Meeting

Project ID #: h2007

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline and Budget

- Project start date: 3/1/18
- Project end date: 1/16/20
- Total project budget: \$300k
 - Total recipient share: \$30k
 - Total shared resources: \$240k
 - Total federal share: \$30k
 - Total funds spent*: \$23k

Barriers

• Cost of Hydrogen production

Partners

- Giner ELX (CRD-18-742)
 - PI: Monjid Hamdan
- NREL ESIF Operations Team
 - Danny Terlip, Owen Smith and Sam Jimenez and Kevin Harrison

Relevance - Electrolyzer Stacks

Regenerative Fuel Cell Systems

Target markets

- Intermittent Renewable Energy Source (RES) integration
 - Backup power for grid outages and load shedding
 - Increase RES ratio and ensure grid stabilization

AREVA's energy storage platform 'GREENERGY BOX' in Corsica, France Utilizing Giner Low-Cost Electrolyzer Stack

Modular RFC systems with energy storage

from 0.2 to 2 MWh

Challenges & Needs

MW Large Scale Projects Wind-to-Hydrogen gaining momentum Microgrid Applications

- Microgrid & hydrogen storage application on isolated island
 - Centralized hydrogen production adjacent wind farm
- Primary source used to generate electricity: fossil fuels
- Renewable energy sources provide 33% of total energy
 - \Box 25% from wind turbines
 - □ 8% from solar panels
- Target-100% energy from renewable power sources by 2020
- Driver: Regulatory support

Markets for Electrolyzer Systems

- Power to Mobility
- Power to Gas
- Power to Hydrogen

System & BOP Built to NEC/IEC standards NFPA2/ATEX Compliant

Giner 500kW-1MW HRS System -Mobile Refueling

Modular Systems 30,60,90,200 Nm³/hr

GINER<mark>ELX</mark>

Electrical Rectifier Controls w/ Load Following for RES

Objectives & Goals

- Address critical aspects for the successful commercialization of Giner ELX's 'Allagash' MW PEM-based electrolyzer platform
 - Perform long-duration testing at Giner ELX and NREL to inform nextgeneration MW-scale electrolyzer system development.
- Develop, assemble and test electrolyzer for use in Large-Scale Renewable Energy applications
 - □ Scale-up of PEM-based Electrolyzer Stack
 - Current 150kW platforms to 1-5 MW platforms
 - □ Validate Performance at high current density (3A/cm²) at 30 bar
 - Stack decay rate, Fluoride release rates and H_2 in O_2
- Cost reduction of Stack and improved manufacturability to reduce the cost of hydrogen production

(MW Scale)

Approach

Three (3) primary tasks :

- Task 1 (Giner ELX):
 - □ Scale-up active area of the electrolyzer stack
 - 290 cm² (150 kW platform) to 1,250 cm² (1 MW platform).
 - Determine number of cells based on the power capabilities at NREL's Energy Systems Integration Facility (ESIF) test site
 - Manufacture & Assemble multi-cell stack based on 1 MW stack platform

Task 2 (NREL):

- □ Modify electrolyzer testbed at NREL's ESIF facility for large-scale electrolyzer stack testing
- Integrate, operate, and monitor stack testing over 5,000-hour period
 - Operate cyclically between a current density of 0 to 3 A/cm²

Task 3 (Giner ELX/NREL):

- Performance analysis
 - Evaluate efficiency, durability, and lifetime of the stack
 - □ Analyze fluoride release rate to determine membrane degradation rates/stack lifetimes
 - Monitor voltage performance / stability at current densities of 3 A/cm²
 - □ Monitor cross-cell diffusion (% H_2 in O_2)
 - Tear down: Determine impact on cell components and catalyst utilized in the MW stack platform

Accomplishments Stack Build, Integration into NREL ESIF Testbed

Giner ELX

- ¼ MW stack build assembled -Feb 19th, 2018
- Stack Prechecks -Mar.-Jun., 2018
- Stack delivered to NREL -July 21st, 2018
- Installed into NREL testbed -Aug 23rd, 2018
 - Stack Design Specifications
 - □ Active Area: 1,250 cm²
 - □ Build contains 29 Cells
 - Operating Pressure: 40 bar
 - Operating Temperature: 70C
 - Operating mode: Differential Pressure
 - Current (Nominal): 3,750 Amps (3 A/cm²)
 - □ Includes support-base for ease of transport
 - CE Compliant
 - Design Iteration: 6th
 - □ Improvement in performance and/or lifetime achieved with each iteration
 - Advancements implemented in other platforms to reduce cost/improve lifetime

NREL-ESIF

- Modified Electrolyzer Test Bed to accommodate 'Allagash' MW-platform stack
 - □ New sensors, power cables, pressure regulator, pumps, etc..
 - Purchased & installed 2 new (4 total) 250 kW power supplies (AC/DC)
 - In current sharing mode, all supplies will provide the required current (3800A) to the Giner ELX stack
 - Test stand is now capable of a1MW stack
- Stack integrated into testbed and operational
- All cell voltages stable and within range

Accomplishments - NREL Test Data

- 300 hours of operation on 29-cell stack at various current and daily start/stop cycles
- %H2 in O2: <10% LFL (Water from H_2 Separator drains into O_2 Reservoir)
 - Fluoride Release Rate measured: < 6 ppb (3 samples; control 5, 10, and 15 ppb)

GINERELX

Accomplishments - Parallel Testing at Giner ELX

7-Cell Allagash Testing & Performance

- ~5,000 hrs. at 3A/cm², 15 bar
- ~5,000 hrs. at 3A/cm², 40 Bar (Ongoing)
- Low Voltage Degradation rate
 <1 µV/hr over 10,000-hour period

GINERELX

Future Plans

- Continue stack testing
 - 5,000-hour period
 - Operate stack cyclically between a current density of 0 to 3 A/cm²
 - Continue performance evaluations (efficiency, durability, lifetime) of the stack
 - Analyze fluoride samples to determine membrane degradation rates/stack lifetimes
 - Monitor voltage performance / stability at current densities of 3 A/cm²
 - Determine impact on cell components and catalyst utilized in the MW stack platform

Cost Reduction, Volume Production

Key supply chain/production Solutions/Activities:

- **Cell Frames:** Lead time reduced with purchase of injection mold
- Assembly & Sealing: Designed/Purchased Bolt Tensioner to reduce labor and assembly time
- MEAs: Implemented R2R Catalyst for MW-Platform
- Capable of producing catalyst for 10-1MW stacks in one day
- **Single Cell Architecture:** Rapid production/Automation:

Traditional

Supported

Membranes

Latest Supported Membrane*

- Enables Dry build
- Hard surface seal

Single-piece Cell Architecture*

*Developed under separate DOE project, Scale-up required for MW-Platforms

Emerging Designs for Future Applications

5 MW

New Market Trends Require Larger **Stacks**

- 5MW Stack Platform
 - **Operating Pressure: 600 psig**
 - Active Area: 3,000+ cm²
 - Current Density: 3,000+ mA/cm²
- Development 2018 2020
- **Economics**
 - Accelerates market opportunities

100 Nm³/hr Electrolyzer Stacl

Collaborations & Partnerships

• Giner ELX

- PI: Monjid Hamdan
- CRADA 18-742

• NREL

- ESIF Operations Team
- Danny Terlip, Owen Smith and Sam Jimenez and Kevin Harrison

NREL Energy Systems Outdoor Test Facility

NREL Electrolyzer System

System Specifications

- 20 70 bar differential pressure
- 4000 A_{dc} at 250 V_{dc} (1 MW DC)
- H_2 Purity: < 5 ppm_v H_2O_v
- 250 kW PEM stack \rightarrow 5 kg H₂ / hr
- Compression w/ ~300 kg H₂ storage
 - 200, 400 and 900 bar

Summary

Objective

• Develop, assemble and test electrolyzer for use in Large-Scale Renewable Energy applications

Accomplishments

- Over 300 hours of operation at NREL on 29-cell stack
 - \circ < 2 V/cell at 3 A/cm², 60 70C and 30 bar cathode pressure
 - o Daily on/off cycles
 - Varying current to the stack
 - \circ < 10% H₂ in O₂
 - o Water samples obtained and returned to Giner ELX for analysis
 - < 6 ppb Fluoride release rate
- Over 10,000 hours of operation at Giner ELX on 7-cell stack
 - o < 1 uV/cell-hr over 10,000 hours of operation</p>
 - 5000 hours at 15 bar cathode pressure
 - 5000 hours at 40 bar cathode pressure

Future Plans

- Continue stack operations at NREL and Giner ELX monitoring for;
 - Stack degradation rate, Fluoride release rate and H₂ in O₂

Thank You

www.nrel.gov

Publication Number

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

