#### 2019 DOE HYDROGEN and FUEL CELLS PROGRAM ANNUAL MERIT REVIEW

## A TOOL TO ESTIMATE THE BENEFITS OF TUBE-TRAILER CONSOLIDATION FOR STATION BUILDERS

Amgad Elgowainy and Krishna Reddi

**Argonne National Laboratory** 



April 30, 2019

h2022

This presentation does not contain any proprietary, confidential, or otherwise restricted information

## **Overview**

#### Timeline

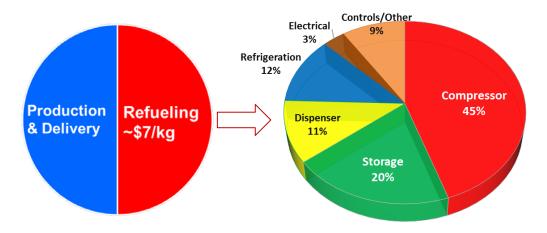
- □ Start: July 2018
- □ End: April 2019
- □ % Complete (FY19): 80%

#### **Barriers/Challenges**

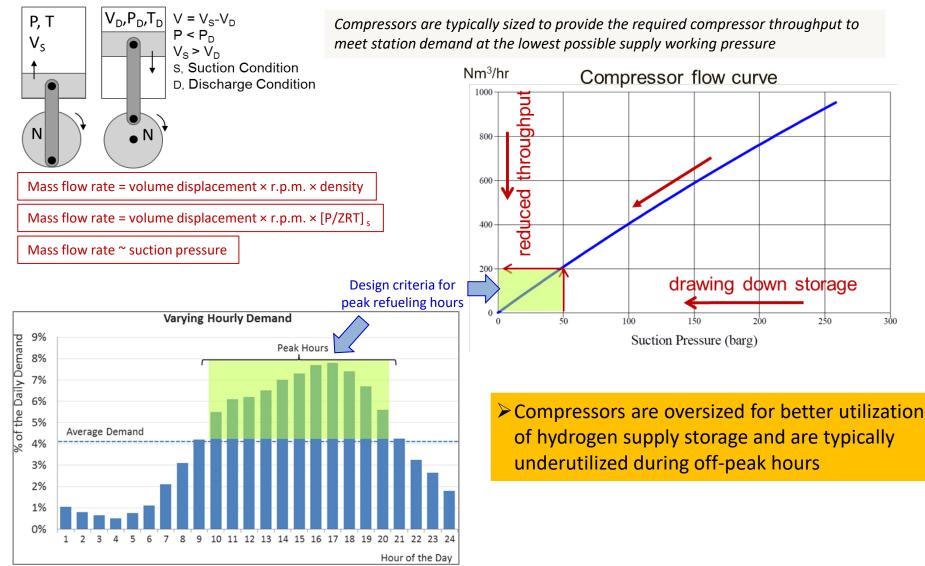
- Lack of hydrogen infrastructure options analysis
- Lack of appropriate models and analytical capability
- Conduct unplanned studies and analyses

#### Budget

- □ FY18 Funding: \$25K
- □ FY19 Funding: \$25K
- □ 50% DOE funding


#### **Partners and Collaborators**

□ PDC Machines Inc.


## Compression cost contribution towards H<sub>2</sub> refueling is significant - Relevance/Impact

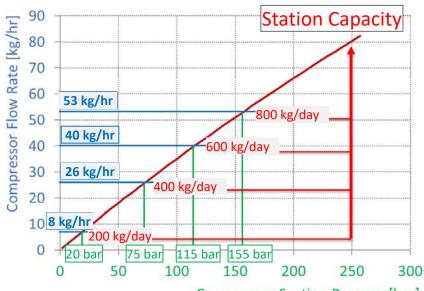
**Buffer** Together, compression and storage Storage make up  $2/3^{rd}$  of the total station High Cooler nm VACD Pressure capital cost 1000 bar 40°C Need to model the impacts of J-T Expansion HX fueling strategies that lower station cost (e.g., pressure consolidation) ~200-300 kg/day Compressor Hydrogen Supply HRS

Typical Gaseous Hydrogen Refueling Station

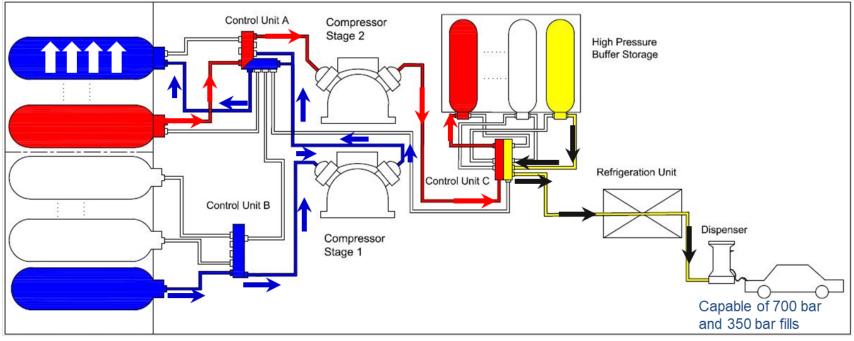


# Compressor operation fundamentals and sizing for hydrogen refueling station - Relevance




# Pressure consolidation underlying concept and benefits -Relevance/Impact

Reduces the station capital cost by up to 25–30%; alternatively, the station's refueling capacity could be increased by a factor of 2–3


Enables consistent high-state-of-charge fueling

Improves compressor operational reliability

Allows significant utilization of the tube trailer (or supply storage)



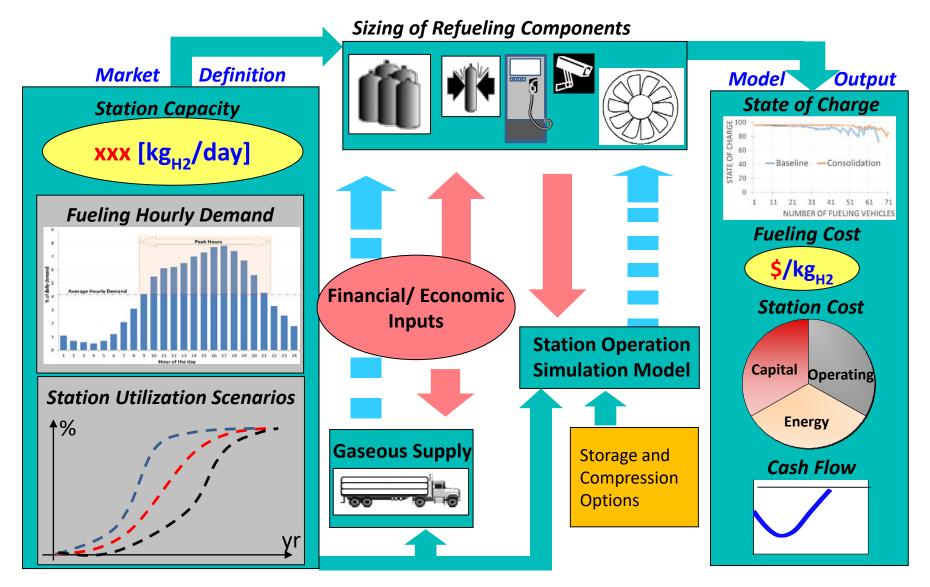




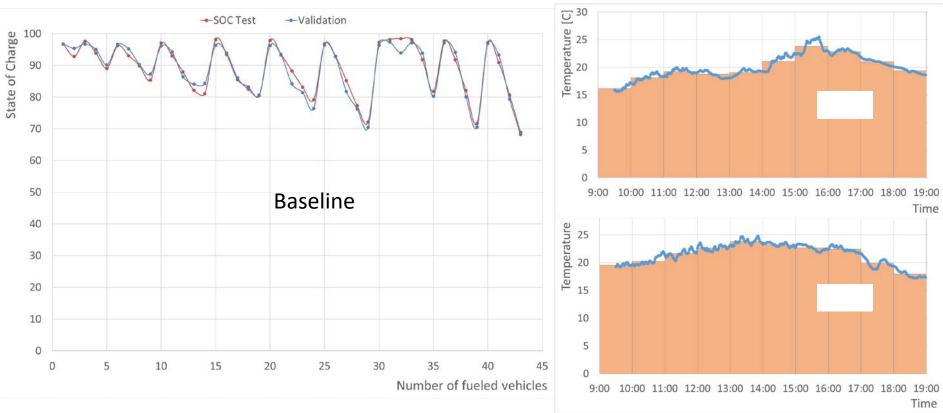
# Objective of pressure consolidation benefits tool - Relevance/Impact

- Develop a tool that estimates the performance of a station using pressure consolidation hydrogen refueling algorithm
- Provide a tool to help station builders quantify the benefits of the pressure consolidation hydrogen refueling, and to compare these benefits to typical baseline station operation
- Provide the refueling cost and state of charge of vehicle fills among other metrics to compare the performance of pressure consolidation against baseline station operation

### Desired tool's inputs and outputs - Approach


#### <u>Tool Inputs:</u>

- Station capacity, hourly refueling profile, and number of dispensers
- Supply storage pressure, and dispenser-rated vehicle fill pressure
- Supply and buffer storage size and configuration
- Economic and financial parameters


#### Tool Outputs:

- Levelized hydrogen refueling cost
- Capital cost of the refueling station
- > Number of fueled vehicles with corresponding state of charge
- Tube-trailer utilization rate

### Tool framework - Accomplishment



#### Tool validation: baseline station operation - Approach



Validated the model using testing data of NREL's station operation

- Majority of the fills were within 3% of the testing data
- Deviations have been analyzed and attributed to station component behavior like lag in shutting opening of valves resulting in movement of mass between cascade storage vessels

# Station operation configuration for estimating the state of charge of vehicle fills -Accomplishment

| Tool Inputs                             | <b>Consolidation Operation</b>                                                                                                       | <b>Baseline Operation</b>                                                                          |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Supply Storage                          | Vessel sizes and configuration                                                                                                       | Vessel sizes and all the vessels are manifolded together                                           |
| High Pressure Cascade<br>Buffer Storage | Vessel sizes and configuration                                                                                                       | Vessel sizes and configuration                                                                     |
| Refueling Procedure                     | Vehicle initially filled directly<br>from supply storage, followed<br>by the high-pressure buffer                                    | Vehicle filled by the high-pressure buffer                                                         |
| <b>Compressor Operation</b>             | Both stages are always assumed<br>to operate in series to<br>consolidate supply storage and<br>replenish the high-pressure<br>buffer | Both stages are always<br>assumed to operate in<br>series to replenish the<br>high-pressure buffer |

### Summary - Accomplishment

- Communicated with PDC Machines Inc. to define the scope of the tool, in terms of desired inputs and outputs
- The tool quantifies the benefits of tube-trailer/supply storage consolidation by estimating and comparing the refueling cost of hydrogen against the baseline station operation
- Developed a engineering model to simulate the station operation and estimate the state of charge of vehicle fills

### **Technology Transfer Activities**

Licensed the pressure consolidation technology to PDC Machines, Inc.

### **Collaborations and Acknowledgments**

Collaborated with PDC machines Inc. to define the scope of the tool

#### Future work

- Test the tool and verify the state of charge and refueling cost estimates
- Release the tool to PDC for testing and use

### **Project Summary**

#### Relevance:

- Pressure consolidation enables consistent high-state-of-charge fueling with better utilization of the supply storage
- Tool is needed to estimate the refueling cost and state of charge of fills as metrics to compare the performance of pressure consolidation against baseline station operation
- Approach: Develop a new tool to simulate the refueling station operation and to estimate the state of charge of vehicle fills. Incorporate techno-economic modeling to estimate refueling cost.
- Collaborations: Collaborated with PDC Machines Inc. to determine the scope of the tool and define inputs and desired outputs.

#### Technical accomplishments and progress:

- Defined the scope of the tool
- Developed the code to simulate the station operation to estimate the stated of charge of the fills

#### **Future Research**:

- Test the tool and verify the state of charge and refueling cost estimates
- Release the tool to PDC for testing and use

#### **Publications**

- Reddi, K., & Elgowainy, A. (2019). "Two-tier tube-trailer operation method and system to reduce hydrogen refueling cost." U.S. Patent Application 15/272,622, issued and currently at Final Data Capture (FDC).
- Reddi, K., Elgowainy, A., Rustagi, N., & Gupta, E. (2018). "Two-tier pressure consolidation operation method for hydrogen refueling station cost reduction," International Journal of Hydrogen Energy 43(5), 2919–2929.
- Elgowainy, A., & Reddi, K. (2017). "Enhanced methods for operating refueling station tube-trailers to reduce refueling cost." U.S. Patent 9,739,418.
- Elgowainy, A., Reddi, K., Sutherland, E., & Joseck, F. (2014). "Tube-trailer consolidation strategy for reducing hydrogen refueling station costs." International Journal of Hydrogen Energy 39(35), 20,197–20,206.

#### Data Management Plan

- The documentation of analysis results and underlying data will be completed by end of project time
- The data generated by this project will be preserved in in machine-readable, digital format, thus will incur minimum cost to preserve

Response to Reviewers' Comments from 2018 AMR

# This project is new in FY19 and thus was not reviewed last year