

Compatibility of Low Cost, High Pressure, Polymer H₂ Dispensing Hoses Project ID# HD2030

PI-Kevin L Simmons, PNNL

Jennifer Lalli, NanoSonic

PNNL-Wenbin Kuang, Ken Johnson Timothy Roosendaal NanoSonic- William Harrison

PNNL is operated by Battelle for the U.S. Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project Start Date: 1/15/2018
- Project End Date: 7/15/19
- % Completed: 75%

Budget

 Total Project Budget: \$60K
Total Federal Share: 50%
Total DOE Funds Spent: \$0K (DOE)
\$23K(cost share)

Barriers

- A. Lack of Hydrogen/Carrier and Infrastructure Options Analysis
- I. Other Fueling Site/Terminal Operations
- K. Safety, Codes and Standards, Permitting

Partners

- PNNL (Project Lab Lead)
- NanoSonic (PI)

Objectives: To increase the safety and reliability of H_2 hoses while low H_2 permeation polymers and durable cryogenic composites to realize the H2@Scale objectives to reduce the cost of H_2

- Provide scientific and technical basis to enable full deployment of H₂ and fuel cell technologies by filling the critical knowledge gap for polymer performance in H₂ environments for dispensing hoses
- Develop standard test protocol for dispensing hose materials under high pressure hydrogen and sub ambient temperatures
- Develop a better understanding of material performance under extreme conditions for improved life cycle performance and costs

Barriers	Project Impact
A. Lack of Hydrogen/Carrier and Infrastructure Options Analysis	Develop hose durability and reliability data for hydrogen compatibility guidance that will provide improved life-cycle costs for dispensing hoses
I. Other Fueling Site/Terminal Operations	Provide alternative dispensing hose options with lower costs and longer operational life
K. Safety, Codes and Standards, Permitting	Develop valuable test method that provide increased understanding of dispensing hose performance under extreme environmental conditions

To determine the lifetime of NanoSonic H₂ hose polymer and composite constituents

- Testing material using time-temperature superposition (TTS) studies via dynamic mechanical analysis (DMA) under H₂
- Friction and wear resistance under in situ H₂ tribometry
- Multi-axis strain testing of composite materials under cryogenic conditions

Project Tasks

<u>Task 1:</u>

Technical Interchanges with NanoSonic

- Materials of interest developed by NanoSonic
- NanoSonic to provide PNNL with newly developed materials
- Interchange technical information

<u> Task 2:</u>

Cryogenic Multi-axis Strain Testing

Selection of relevant polymers

- Determining preliminary test parameters
- Conducting preliminary tests and establishing optimum conditions of operation

<u> Task 3:</u>

H₂ Tribology and H₂ DMA TTS for Polymer and Composite Lifetime Assessment

Baseline properties before and after exposure to H_2

Approach In Situ Tribology Tester

PNNL Unique In situ Tribometer

- Linear reciprocating adapted from ASTM G133
- Normal load (using weights) presses steel ball into moving sample
- Frictional force and vertical wear depth profiles measured in situ
- Pressures up to 5,000 psi hydrogen
- Ambient air and high-pressure argon tests run for comparison

Capabilities

- Produce abrasion, adhesion, displacement to target material
- Render coefficient of friction and wear rate
- Provide insights on tribological performance of materials
- Predict wear resistance of materials at various conditions and also useful in designing new materials with improved performance

Electrical Feedthroughs

Accomplishments and Progress Tribology Testing of NanoSonic hose barrier material at various conditions

High-pressure hydrogen effects on tribological performance investigated

Examined in ambient air (red) and in 4000 psi hydrogen (blue)

- Coefficient of Friction increases with high pressure hydrogen
- Wear factor increases, but is dependent on material type

Approach In situ Dynamic Mechanical Analysis

- Pressure range atmospheric to 30 MPa
- Frequency sweeps
- Creep and recovery
- Temperature range -50°C to 125°C
- Isothermal runs with pressure sweeps to investigate pressure effects on material with gas variable

Test Probe

system

Cold fluid in and out

8

Sub ambient test

chamber

Accomplishments and Progress In situ Dynamic Mechanical Analysis

- In situ DMA is complete & baseline experiments ongoing isothermally with high-pressure helium
- Capable of measuring various mechanical property values (e.g. storage modulus) in situ on account of high pressure, gas species, and temperature
- Generate results for time-temperature superposition studies

Approach

Composite Multiaxial Strain and Hose Testing

Digital image correlation ۲ technique used to provide information on failure threshold during hose pressurization on where it fails and how it fails (strain analysis)

Accomplishments and Progress: X-ray Examination and Hose Testing under 25,200 psi pressure

X-ray analysis pre-test

The strain in the tube portion was generally around 1% with spots up to 2%.

After pressure was released from the tube, there was approximately 0.1% residual strains in the tube.

The major strains in the tube are almost entirely in the axial direction.

• Not previously reviewed

Remaining Challenges and Barriers

Challenges and Barriers	Mitigation
Hose Connections	Testing to understand deficiency in hose connections that will allow for connector design changes
Hose Liner Barrier Cold Gas Properties	Testing to develop material properties in cold gas hydrogen that will provide insight on material deficiency
Composite in-plane Strain Understanding	Develop an understanding of the composite material limitations for hoses and tanks that will provide a more predictable understanding

Industrial Collaborators NanoSonic

Contacts

PNNL

Kevin Simmons (PI, PM)	霍 : 509-375-3651
Wenbin Kuang	2 : 509-375-4338
Ken Johnson	霍 : 509-375-2241
Timothy Roosendaal	霍 : 509-375-2743
NanoSonic	
Jennifer Lalli (PI)	2 : 540-626-6266
William Harrison (PM)	霍 : 540-626-6266

- ⊠: <u>kl.simmons@pnnl.gov</u>
- ⊠: Wenbin.kuang@pnnl.gov
- ⊠: <u>ki.johnson@pnnl.gov</u>
- ⊠: timothy.roosendaal@pnnl.gov
- ⊠: jhlalli@NanoSonic.com
- ⊠: wharrison@NanoSonic.com

• Accomplishment:

- Tribology testing completed on ambient air and 4000 psi hydrogen
- Developed test method for strain measurement in hoses during burst testing
- Pressure (burst) testing of sample hoses NanoSonic
- High pressure in situ DMA in progress

• Future Work:

- In situ Dynamic Mechanical Analysis (DMA) at 4000 psi in helium and argon
- Sub-ambient testing at -40C in in-situ DMA at 4000 psi helium and argon
- In-plane strain testing on composite plates
- DIC burst testing of hoses
- Recommendations to NanoSonic based on observations
- Any proposed future is subject to change based on funding levels