Project ID 2052

Merchant Hydrogen at Scale: A Technical-Economic Case Study of the Potential for Nuclear Hydrogen

PI: Uuganbayar Otgonbaatar, Exelon Co-PIs: Tony Leo, FuelCell Energy Cristian Rabiti, Shannon Bragg-Sitton, Richard Boardman (Presenter)

Mark Ruth, Amgad Elgowainy, Alice Muna

April, 2019

RENEWABLE ENERGY LABORATORY

Exelon.

Sandia National Laboratories

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and Budget

- Project Start Date: 09/01/2018
- Project End Date: 09/30/2019
- Total Project Budget: \$1,575,000
 - Total Recipient Share: \$650,000
 - Total Federal Share: \$925,000
 - Total DOE Funds Spent*- TOTAL
 - NE \$137K
 - ANL \$90K
 - NREL- \$150K
 - SNL- \$23K

DOE Sponsors

- DOE-EERE Fuel Cell Technology Office
- DOE-NE Crosscutting Technologies Development, Integrated Energy Systems Program

Barriers

- Barriers addressed
 - Hybrid operation of nuclear power plants
 - Thermal energy integration with high temperature electrolysis
 - Commercial manufacturing pathway for electrolysis modules

CRADA Partners

- Exelon Corporation
- FuelCell Energy
- Idaho National Laboratory
- National Renewable Energy Laboratory
- Argonne National Laboratory
- Sandia National Laboratory

Relevance

This project aims to evaluate the technical and economic potential for expanding the markets for existing nuclear reactors. This evaluation provides a basis for converting baseload nuclear plants into hybrid plants that produce hydrogen, resulting in commercial investments and industry growth in the United States.

- Nuclear Energy is the only contributor to global clean energy supply that is a carbon-free, scalable energy source that's available 24 hours a day
- Increases in variable wind and solar energy and low-cost natural gas impact baseload nuclear power generation stations; a new operating paradigm is needed for these plants to maintain profitability
- Hydrogen production with nuclear energy may increase plant revenue

Approach

- 1. Assess hydrogen market in region of *Exelon Nuclear Reactor*
- 2. Evaluate technical and economic feasibility of integrated nuclear-renewable-hydrogen plant operation
- 3. Complete preliminary engineering design of thermal and electrical energy integration with *FuelCell Energy's High Temperature, Steam Electrolysis (SOEC)*
- 4. Evaluate logistics of dynamic hydrogen production, storage, delivery, and use by industry (e.g., steel manufacturing)
- 5. Complete investor-grade study with preliminary design
- 6. Issue DOE project report

- NREL/Exelon- Provide grid pricing (LMP); cost of energy projections
- ANL- Determine local hydrogen markets, hydrogen storage & delivery systems & costs
- INL/Exelon/FuelCell Energy- Thermal/electrical integration, electrolysis plant design process modeling, economic pro forma calculations 5
- SNL/Exelon- Hydrogen storage, plant safety codes and standards

Exelon. Accomplishments

Preliminary Market Assessment Completed

- Specific nuclear plant site selected
- Electricity market assessment
- Thermal integration study completed by Exelon
- Generic high temperature electrolysis plant developed
- ✓ H2A modeling completed
- ✓ Aspen™ Process Modeling of initial SOEC System
- Local hydrogen markets identified
- High Temperature Electrolysis (SOEC) Plant Design Layout and LWR interfaces completed by FuelCell Energy
- Project Progress Meeting January 30, 2019
- Go/No-Go Decision (passed!)
- Project on schedule and budget

- > Hydrogen demand assessment 90% complete
- Hydrogen, production, storage and delivery cost analysis completed using H2A

Leverages FCTO Analysis by ANL

"The Technical and Economic Potential of H2@Scale within the United States"

- NREL Coordinated with Exelon and Constellation to select key parameters
- Approach to project in the future Local Marginal Price established

LOW NG + LOW RE PRICES -

80 YEAR NUCLEAR LIFETIME -

LOW DEMAND GROWTH -

ALL OTHER INPUTS USE THE MID-CASE VALUES

Idaho National Laboratory Accomplishments

Initial Aspen™ modeling for generic high temperature electrolysis plant (SOEC)

Aspen Process Economic Analyzer (APEA)

- Cost estimating software that provide CAPEX estimates and OPEX estimates for comparing and screening multiple process schemes.
- Integrated with process simulators ASPEN HYSYS and Aspen Plus.
- Map the simulator unit operations to APEA, e.g.,

fuelcellenergy

Heat Recuperation Improves efficiency 9

Accomplishments fuelcellenergy

> H2A model prediction and sensitivity studies completed

LWR/HTE (SOEC)

- > 1191 MWe
- 755 tons/day H₂ (639 tons/day H₂ with an operating capacity efficiency of 84.7%)
- \$403/kWe (DC power input)
- TCI of \$434 M

SMR

- 639 tons/day H₂ with an OCF of 90%
- TCI of \$292 M

H₂ Production Cost Results Summary (2019\$) Large-Scale Scenarios – LWR/HTE vs. Natural Gas SMR

> High Temperature Electrolysis Plant Design Layout

Exelon. Collaboration & Coordination

- CRADA Project involves 2 Industries, 4 National Labs
 - Subcontractors to Exelon: Constellation
 - DOE NE-EERE Partnership
 - DOE-EERE / Fuel Cell Technology Office
 - DOE-NE / Crosscutting Technologies Development, Integrated Energy Systems Program
- Bi-weekly project meetings; Regular offline meetings
- Intellectual property protection managed under CRADA
- Proprietary / Business Sensitive material managed

Exelon and FuelCell Energy are supportive of H2@Scale and DOE-NE activities

- > Exelon and FCE participation: January NE-LWRS Stakeholder Engagement
- Exelon Presentation: February FCTO "Make" Webinar

Cooperation and confidentiality underscores this CRADA

The team is focused on the outcomes that will accelerate business success

Remaining Barriers & Challenges

- □ The project is set to engage industrial users of hydrogen
- □ Aspen[™] modeling for the investor grade report is a significant undertaking
- INL RAVEN system optimization modeling is dependent on and requires timely completion of Phase 2 grid LMP projections

Proposed Future Work

NREL grid modeling is underway with input from **Exelon & Constellation** INL Aspen[™] Modeling Analysis has commenced with Approach: input from FCE

Projecting **LMPs**

Run each PLEXOS

model to obtain the

resulting LMPs for

our region of interest

buildout year into a **PLEXOS** production cost model database

Transfer LMPs to INL for techno-economic analysis

RAVEN "system scale and operating optimization" will be completed in FY19-Q4 and FY20-Q1

Exelon

- SNL will conduct safety assessment and provide guidance relative to siting a hydrogen plant near a nuclear plant
- Project team will begin discussion with hydrogen offtakers
- Investor report due to Exelon and FuelCell Energy FY19-Q4

MIDREX® Direct-Reduced Iron Products

Example RAVEN Optimization of Nuclear, Wind, Natural Gas, Battery, Hydrogen Plant integrated system

Summary

- This CRADA addresses new market opportunities for nuclear energy at a time when existing reactors are experiencing diminishing revenues
- Preliminary results indicate a light-water reactor hybrid producing electricity and hydrogen can be profitable and may spur commercialization of H2@Scale
 This work is an example of a successful DOE cross-cutting effort
- This project is on schedule and on budget
 CRADA partners are working well together

- Technology transfer includes model sharing with the industrial partners
- The investor-grade report will help to accelerate technology commercialization and capital investment in real projects
- □ The DOE goal of \$2.00/kg H₂ appears to be possible with technology acceleration
- Clean hydrogen will be a game changer

Yes, LWR Hydrogen hybrids could this be the solution!