

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – C5ISR CENTER

Aluminum Hydride Title III Project

Shailesh Shah

Chemical Engineer

CP&I Directorate, Power Division

Distribution Statement A

Approved for Public Release, Distribution is Unlimited

The BUZZ About ALANE

WHY ALANE?

Different materials available for energy storage

Selected Alane (AlH₃) based on high energy density, high H₂ product purity and H₂ generation process

$$2AlH_3 \xrightarrow{\Delta} 2Al + 3H_2$$

 $\Delta H = 6.6 \text{ kJ/mol H}_2$

With commercial partner have developed AIH₃ systems that are promising

Technology	EDAB	NH3 Borane	Na Silicide	Na Borohydride
Fuel Energy Density (Wh/kg)	3697	6722	3025	7058
Cartridge (Wh/kg)	490	800	133	587
Comments	Pentaborane byproduct	Ammonia byproduct	Low energy density	Difficult reaction control

Technology	RMFC	DMFC	AlH3
Fuel Energy Density (Wh/kg)	2907	5538	3361
Cartridge Wh/kg	485	780	800
System Power Density (W/kg)	22	13	29
System Vol. Power Density (W/I)	23	11	32
TRL	TRL 8	TRL 8	TRL 6

- T. Thampan, D. Shah, C. Cook, J. Novoa, S. Shah,
- J. Power Sources 259 (2014) 276-281

ALANE APPLICATIONSSoldier

A LITTLE BIT OF HISTORY

7.0 cm

3.4 cm

Volume: 62 cm³ Weight: 68 g ED: ~800Wh/kg

Fully integrated System Dry Weight: 967 g

Fuel Cell System: 310 g (Fuel cell: 109 g)

Chamber: 295 g

Battery Chamber

ARDICA 20 W RIF PROGRAM WEARABLE RANGE EXTENDER

Contribution to the Requirement

- Lightweight, wearable, fuel cell power generator, reduces Soldier Load compared to CWBs alone
- Works in conjunction with CWB to keep the CWB at high State of Charge (SOC) and extend battery runtime
- Designed to communicate with ISPDS, ISPDS-C, SPM, and NETT WARRIOR to augment Small Unit Power solutions
- Transition (Existing Military System, Program or Capability)
 - PM SWAR can field units to augment CWB, power hubs, and NETT WARRIOR
 - Alane Power Systems for Wearable, TARDEC Vehicle, and UAS power
- Anticipated TRL: 5/6

Technical Approach/Qualifications

Project Objectives and Scope:

- Operate as a battery charger for the CWB
- Maintain Conformal Wearable Battery (CWB) SOC while passing battery power through to the user
- Round form factor cartridges for decreased cost and increased capacity compared to Wearable Power System (WPS)

Key Personnel, Facilities / Equipment

- · Dr. Tibor Fabian, Daniel Braithwaite: Ardica team leaders
- Ardica lab contains all equipment required for systems dev

Related Prior or Current Work:

- · Ardica Wearable Power System (WPS)
 - Field Testing at AEWE 2016
 - Revised prototypes delivered Dec 2018
- · Ardica 300W Squad Power Generator

Potential Risks

- Unexpected delays due to integration into new form factor
- Compatibility with power hubs depends on all components compliance with Smart Battery charging specification
- Output power capabilities subject to limitations of combined CWB and Fuel Cell during start-up

ARDICA 300 W GENERATOR – POWER TO RECHARGE ARMY MOBILE BATTERIES

570 Wh No Cartridge 570 Wh

7.6 cm

Contribution to the Requirement

- Lightweight, nearly silent, no toxic emissions, fuel cell squad power generator, fulfills energy gap for Soldier missions compared to CWBs alone
- · Works in conjunction with Universal Battery Charger (UBC) to charge CWBs using lightweight solid-state fuel cartridges
- Transition (Existing Military System, Program or Capability)
 - Squad/Platoon Power Battery Charging requirement
 - · Auxiliary power for silent watch capability on vehicles or other unmanned platforms
 - Alane Power Systems for Wearable, TARDEC Vehicle, and **UAS** power
- Anticipated TRL: 5

System weight: 9.6 lbs Cartridge weight: 1.1 lbs Cartridge capacity: 570 Wh

Generator 21.8 cm 7> cm 22 cm

300 W

Technical Approach/Qualifications Project Objectives and Scope:

- Design an Alane-fueled 300 W fuel cell power generator
- Assemble and test the operation of the 300 W generator when used in conjunction with a UBC to recharge mobile batteries
- Significant reduction in weight for soldier operations compared to other energy sources

Key Personnel, Facilities / Equipment

- · Dr. Jeffrey Mishler, Daniel Braithwaite: Ardica team leaders
- · Ardica lab contains all equipment required for systems dev
- · Shailesh Shah/Tony Deanni/Kevin Chu

Related Prior or Current Work:

- Ardica Wearable Power System (WPS)
 - Field Testing at AEWE 2016
 - Revised prototypes delivered Dec 2018
- · Alane Hydrogen Storage for an ATV (with TARDEC).
 - SBIR Phase I (2017-2018)

ALANE APPLICATIONS Unmanned Ground Vehicles

Use Cases and Estimated Alane Demand

Platform	# Vehicles	H2/vehicle (kg)	Total kg AlH ₃ /day	MT AlH ₃ /year
SMET	100	10	10,204	3,724
GMV	300	15	45,918	16,760
RCV	100	60	61,224	22,347
Total			117,346	42,832

Squad Multi-pupose Equipment Transport

Ground Mobility Vehicle

Robotic Combat Vehicle

ALANE APPLICATIONS Unmanned Underwater Vehicles

USE CASE – REMUS 600

Remus 600

Knifefish UUV

REMUS 600	Initial Prototyping	~ •	Initial Ops	Deployed Ops	Total
Alane Demand	12 Kg	1.2 MT	56 MT	112 MT	169 MT/yr

POTENTIAL CUMULATIVE ALANE DEMAND

Platform	# Systems Planned	Alane/System/yr	Total Annual Alane
20 W Wearable	26, 000	20 kg	520 MT
15 kW - SMET	100	37,240 kg	3,724 MT
250 W - REMUS 600	50	2, 232 kg	112 MT
TOTAL PO	> 4000 MT		

MIND BOGGLING - DEMAND

ALANE MANUFACTURING PROCESS

CHEMISTRY

Brower Petrie Process

SRI Process

$$\begin{aligned} &\text{NaAlH}_4 + \text{LiCl} & \xrightarrow{\text{THF}} & \text{LiAlH}_4 \left(\text{LAH} \right) + \text{NaCl(s)} \\ &4 \text{LAH} + \text{AlCl}_3 + 4 \text{Et}_2 \text{O} & \longrightarrow 4 \text{AlH}_3 \bullet \text{Et}_2 \text{O} + \text{LiAlH}_4 (\text{s}) + 3 \text{LiCl(s)} \\ &4 \text{LAH}_3 \bullet \text{Et}_2 \text{O} & \xrightarrow{\text{LAH}_3} & \text{Lah}_3 + \text{Et}_2 \text{O(g)} \end{aligned}$$

PLANT PROCESS STEPS

SRI Process

Figure 1. α-AlH₃ process diagram

Brower Petrie Process

COST MODELLING

- Highly dependent on Raw Material Costs –
 potentially > 50% of total manufacturing cost could
 be raw materials LiAlH4 cost is key
- High Labor content for small lab scale manufacturing can be addressed by large scale batch or continuous processes
- Target cost must be competitive with rechargeable battery costs which are < \$ 0.10/cycle/watt-hour
- \$ 1000/kg cost for alane translates to ~ \$ 1.00/Wh for portable applications

THE STORY ON ALANE

- There is no current manufacturer of Alane in the US
- Fuel Cell grade Alane process has been demonstrated at a laboratory scale of ~ 200 g/batch
- Data is needed to determine accurate Capital, Raw Material, Energy and Labor costs estimates for a multi MT/year Alane plant
- There is a significant market potential for Alane for Military Applications
- Steady initial quantity supply of Alane is required to stimulate military market demand