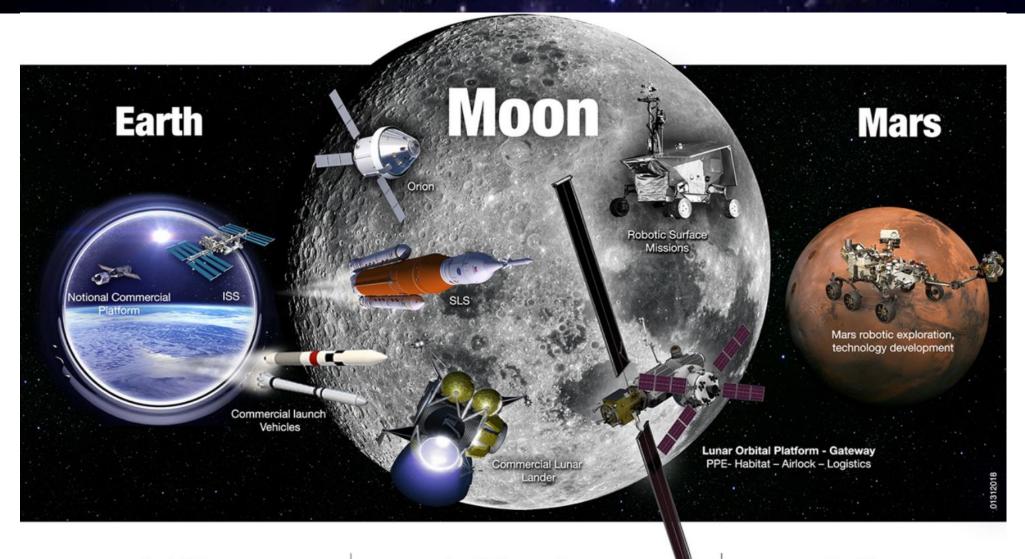
NASA Fuel Cell and Hydrogen Activities

Presented by: Ian Jakupca


Department of Energy Annual Merit Review 30 April 2019

Overview

- National Aeronautic and Space Administration
- Definitions
- NASA Near Term Activities
- Energy Storage and Power
 - Batteries
 - Fuel Cells
 - Regenerative Fuel Cells
 - Electrolysis
- ISRU
- Cryogenics
- Review

National Aeronautics and Space Administration

In LEO Commercial & International partnerships In Cislunar Space

A return to the moon for long-term exploration On Mars Research to inform future crewed missions

3

Acknowledgements

NASA has many development activities supported by a number of high quality people across the country. This list only includes the most significant contributors to the development of this presentation. Headquarters

- Lee Mason, Space Technology Mission Directorate, Deputy Chief Engineer
- Gerald (Jerry) Sanders, Lead for In-Situ Resource Utilization (ISRU) System Capability Leadership Team

Jet Propulsion Laboratory

- Erik Brandon, Ph.D, Electrochemical Technologies
- Ratnakumar Bugga, Ph.D, Electrochemical Technologies

Marshall Space Flight Center

• Kevin Takada, Environmental Control Systems

Kennedy Space Center

• Erik Dirschka, PE, Propellant Management

Glenn Research Center

- William R. Bennett, Photovoltaic and Electrochemical Systems
- Fred Elliott, Space Technology Project Office
- Ryan Gilligan, Cryogenic and Fluid Systems
- Wesley L. Johnson, Cryogenic and Fluid Systems
- Lisa Kohout, Photovoltaic and Electrochemical Systems
- Dianne Linne, ISRU Project Manager
- Phillip J. Smith, Photovoltaic and Electrochemical Systems
- Tim Smith, Chief, Space Technology Project Office

Electrochemical System Definitions

Primary Power

Discharge Power Only

Description

- Energy conversion system that supplies electricity to customer system
- Operation limited by initial stored energy

Examples

- Nuclear (e.g. RTG, KiloPower)
- Primary Batteries
- Primary Fuel Cells

NASA Applications:

Missions without access to continuous power (e.g. PV)

- All NASA applications require electrical power
- Each primary power solution fits a particular suite of NASA missions

Energy Storage

Charge + Store + Discharge

Description

- Stores excess energy for later use
- Supplies power when baseline power supply (e.g. PV) is no longer available
- Tied to external energy source

Examples

- Rechargeable Batteries
- Regenerative Fuel Cells

NASA Applications:

Ensuring Continuous Power

- Satellites (PV + Battery)
- ISS (PV + Battery)
- Surface Systems (exploration platforms, ISRU, crewed)
- Platforms to survive Lunar Night

Commodity Generation

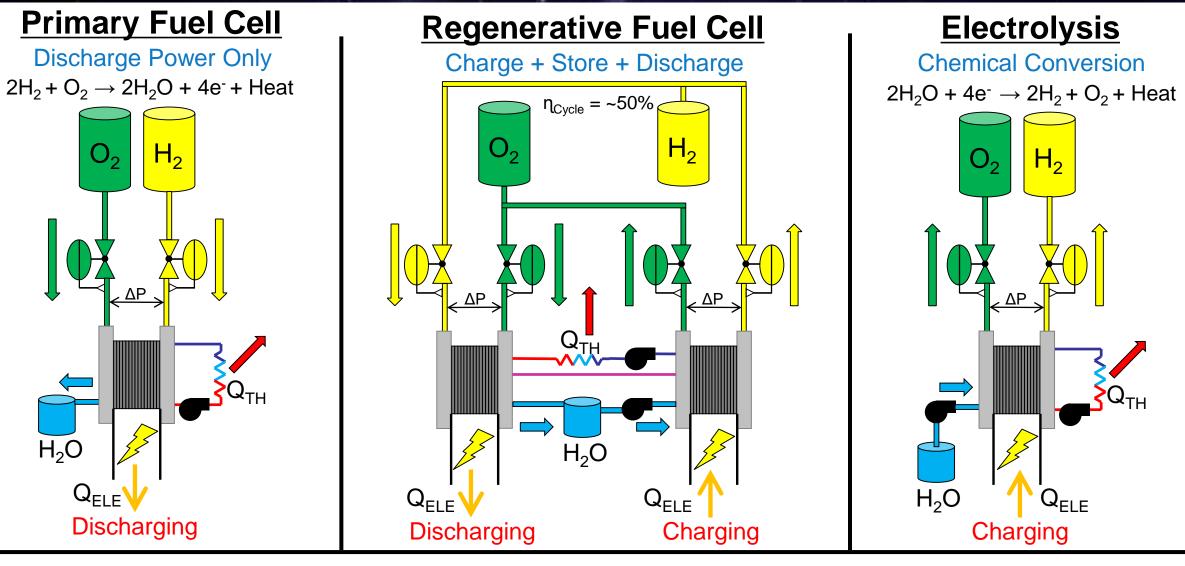
Chemical Conversion

Description

- Converts supplied chemical feedstock into useful commodities
- Requires external energy source (e.g. thermal, chemical, electrical, etc.)

Examples

- ISS Oxygen Generators (OGA, Elektron)
- ISRU Propellant Generation


NASA Applications:

Life-support, ISRU

- Oxygen Generation
- Propellant Generation
- Material Processing
- Recharging Regenerative Fuel Cells

Electrochemical System Definitions

Regenerative Fuel Cell = Fuel Cell + Interconnecting Fluidic System + Electrolysis

POWER to explore the LUNAR SURFACE

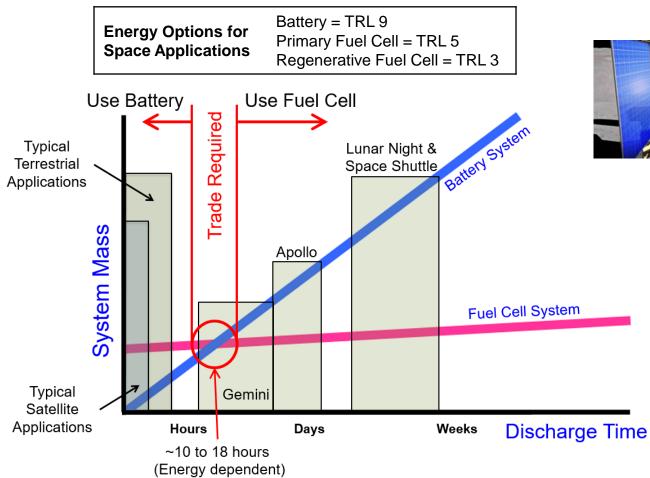
?;

Multiple power technologies comprise the Lunar Surface Power Architecture

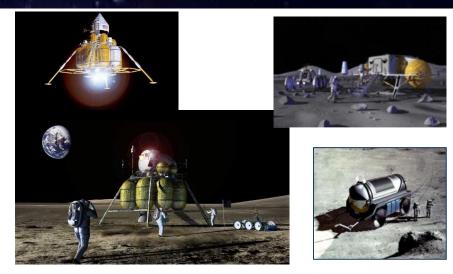
`**??**∎€€}-☆-

NUCLEAR BATTERY

SOLAR


REGENERATIVE FLIEL CELLS

Each power technology contributes to an integrated Regenerative Fuel Cells (RFCs) for Lunar Exploration

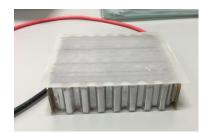

• Batteries meet energy storage needs for low energy applications

- RFCs address high energy storage requirements where nuclear power may not be an option (in locations near humans)
- Nuclear and radio isotope power systems provide constant power independent of sunlight

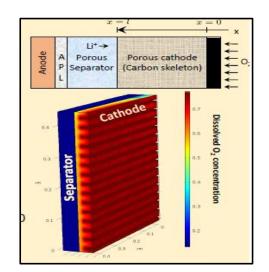
Energy Storage Options for Space Applications

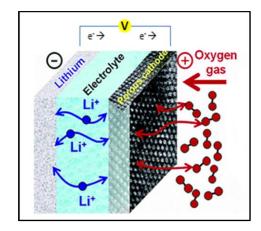
- Current energy storage technologies are insufficient for NASA exploration missions
- Availability of flight-qualified fuel cells ended with the Space Shuttle Program
- Terrestrial fuel cells not directly portable to space applications
 - Different wetted material requirements (air vs. pure O₂)
 - Different internal flow characteristics
- No space-qualified high-pressure electrolyzer exists
 - ISS O₂ Generators are low pressure electrolyzers
 - Terrestrial electrolyzers have demonstrated >200 ATM operation

Battery Activities in Support of NASA Missions



- Low temperature electrolytes to extend operating temperatures for outer planetary missions
- High temperature batteries for Venus missions
- Non-flammable separator/electrolyte systems
- Solid-state high specific energy, high power batteries
- Li-air batteries for aircraft applications


Improved cathode and electrolyte stability in Lithium-Oxygen batteries


- Multi-functional load-bearing energy storage
- X-57 Maxwell distributed electric propulsion flight demonstration
- Safe battery designs and assessments for aerospace applications

Energy Storage System Needs for Future Planetary Missions

Primary Batteries/Fuel Cells for Surface Probes:

High Temperature Operation (> 465C) High Specific Energy (>400 Wh/kg) Operation in Corrosive Environments

Rechargeable Batteries for Aerial Platforms:

High Temperature Operation (300-465C)

Operation in Corrosive Environments

Low-Medium Cycle Life

High Specific Energy (>200 Wh/kg)

Operation in High Pressures

Primary Batteries/Fuel cells for planetary landers/probes:

High Specific Energy (> 500 Wh/kg),

Long Life (> 15 years),

Radiation Tolerance & Sterilizable by heat or radiation

Rechargeable Batteries for flyby/orbital missions:

High Specific Energy (> 250 Wh/kg)

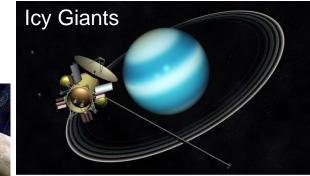
Long Life (> 15 years)

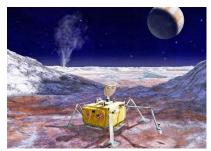
Radiation Tolerance & Sterilizable by heat or radiation.

Low temperature Batteries for Probes and Landers:

Low Temperature Primary batteries (< -80C)

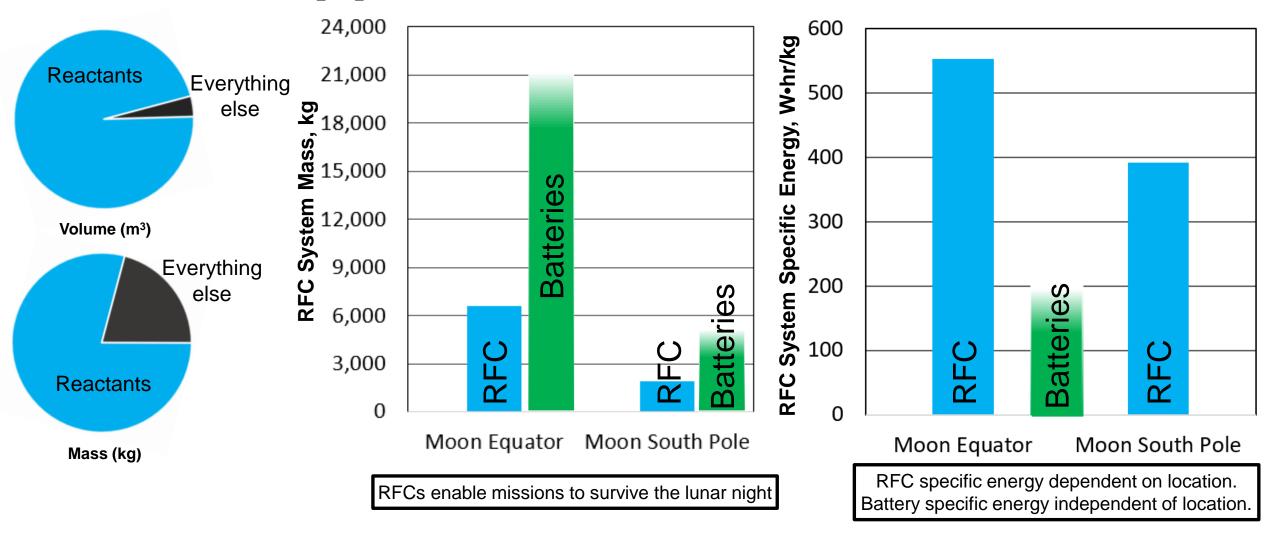
Low Temperature Rechargeable Batteries (< -60 C)


Europa Orbiter

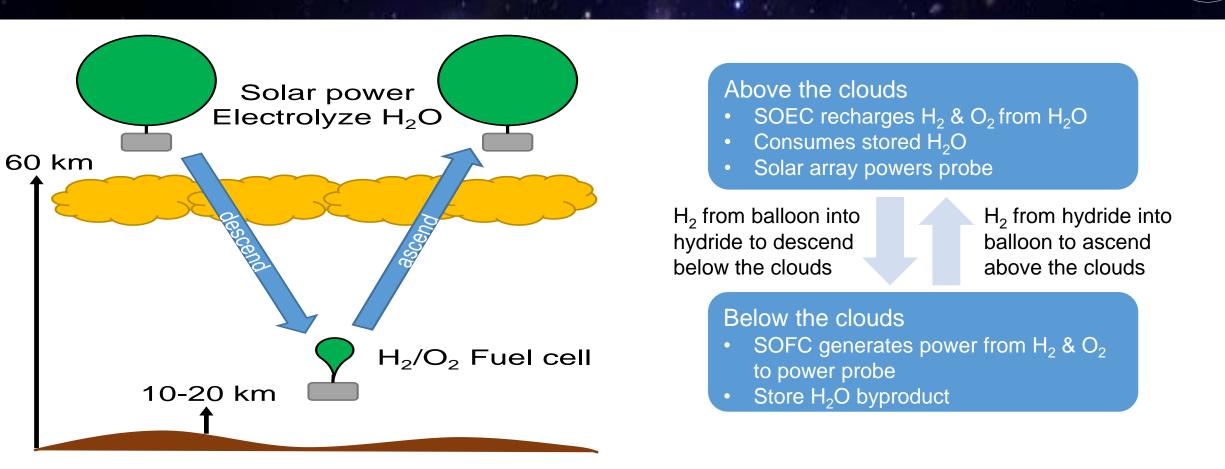


Inner Planets Outer Planets

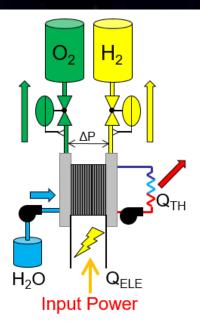
Uranus/Neptune missions

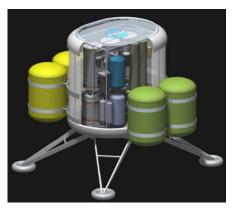

Europa Lander

All images are Artist's Concepts


Lunar RFC Trade Study Results

<u>10 kW H₂/O₂ RFC Energy Storage System for Lunar Outpost</u>


Venus Power Concept for Variable Altitude Balloon

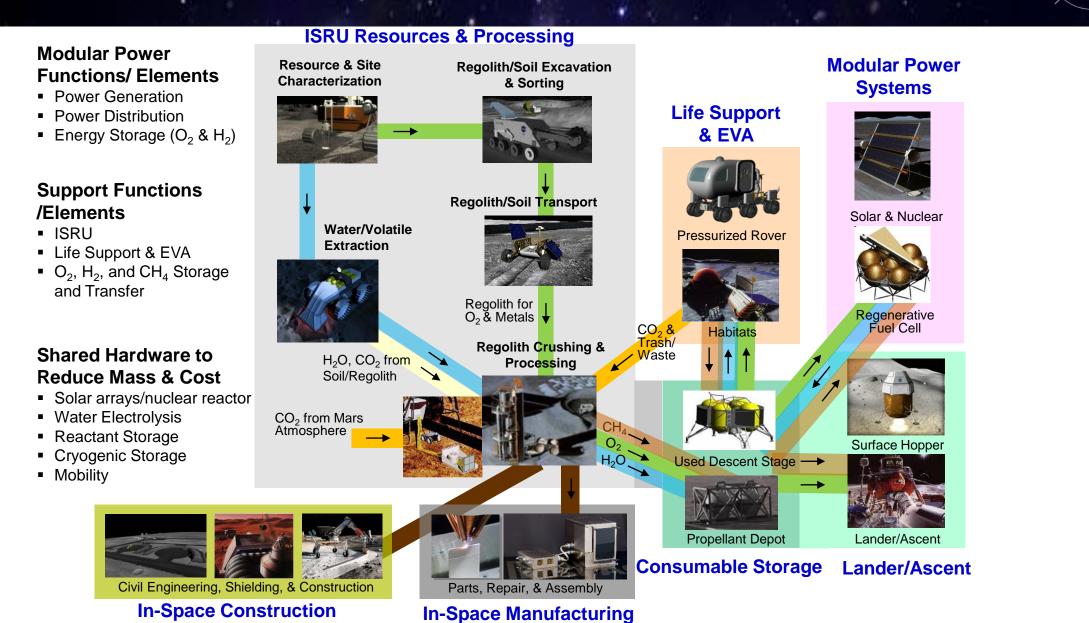


- A solar array powers the probe at high altitude and generates H₂ and O₂ with Solid Oxide Electrolysis Cell (SOEC) using water carried from ground as a closed-system.
- Metal hydride H₂ storage and compressed gas O₂ storage
- Solid Oxide Fuel Cell (SOFC) will powers the probe at low altitudes from the stored H₂ and O₂.
- H₂-filled balloon will be used for buoyancy and altitude control (60-15 km).

Electrolysis within NASA

Fundamental Process

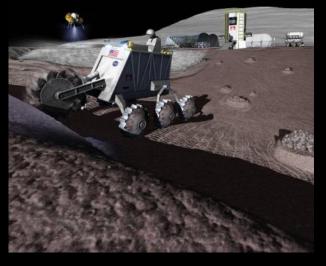
- Electrochemically dissociating water into gaseous hydrogen and oxygen
- Multiple chemistries Polymer Electrolyte Membrane (PEM), Alkaline, Solid Oxide
- Multiple pressure ranges
 - ISRU & Life support = low pressure
 - Energy storage = high pressure
- Life Support: Process recovered H₂O to release oxygen to source breathing oxygen
 - Redesign ISS Oxygen Generator assembly for increased safety, pressure, reliability, and life
 - Evaluate Hydrogen safety sensors


Energy Storage: Recharge RFC system by processing fuel cell product H_2O into H_2 fuel and O_2 oxidizer for fuel cell operation

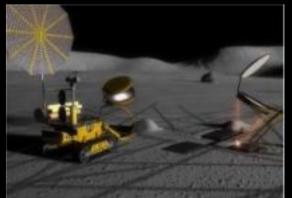
ISRU: Process recovered H_2O to utilizing the resulting H_2 and O_2

- Hydrogen Reduction Hydrogen for material processing
- Life Support Oxygen to source breathing oxygen
- Propellant Generation Oxygen for liquefaction and storage

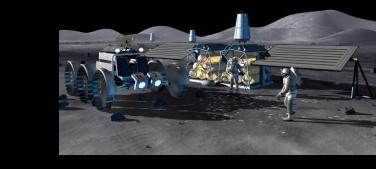
In-situ Resource Utilization (ISRU)



Lunar ISRU Mission Capability Concepts



Resource Prospecting – Looking for Polar Ice

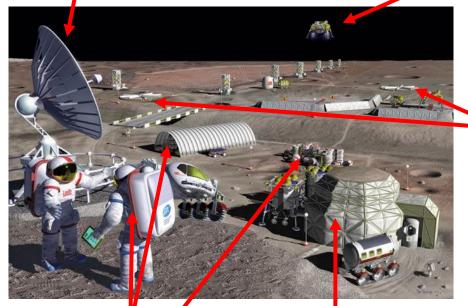


Thermal Energy Storage Construction



Carbothermal Processing with Altair Lander Assets

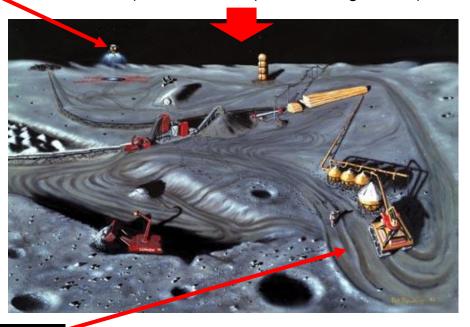
Consumable Depots for Crew & Power


Landing Pads, Berm, and Road Construction

ISRU is Similar to Establishing Remote Mining Infrastructure and Operations on Earth

Communications

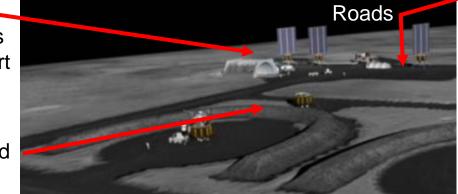
- To/From Site
- Local


Transportation to/from Site:

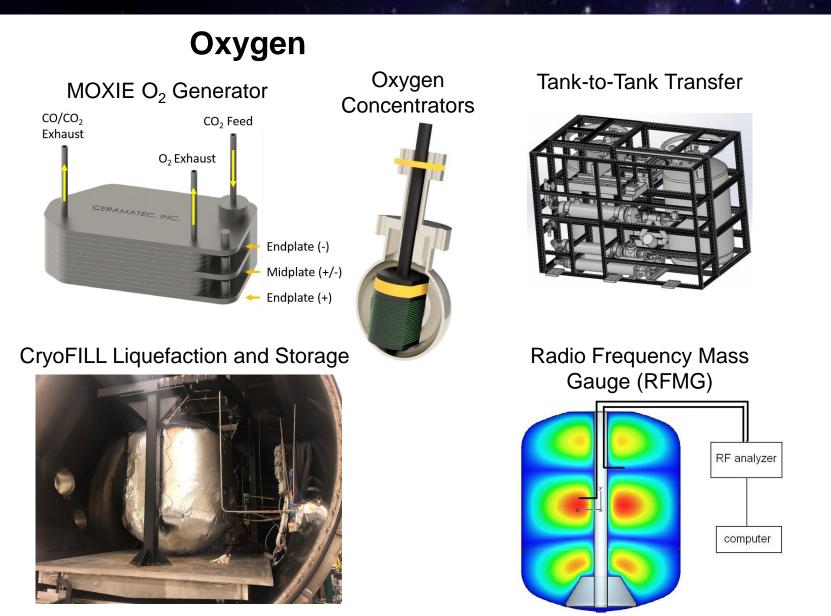
- Navigation Aids
- Loading & Off-loading Aids
- Fuel & Support Services

Power:

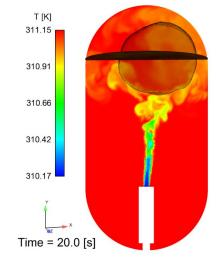
- Generation
- Storage
- Distribution

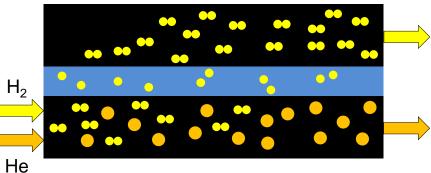

Planned, Mapped, and Coordinated Mining Ops: Areas for: i) Excavation, ii) Processing, and iii) Tailings

Maintenance & Repair


Logistics Management Living Quarters & Crew Support Services

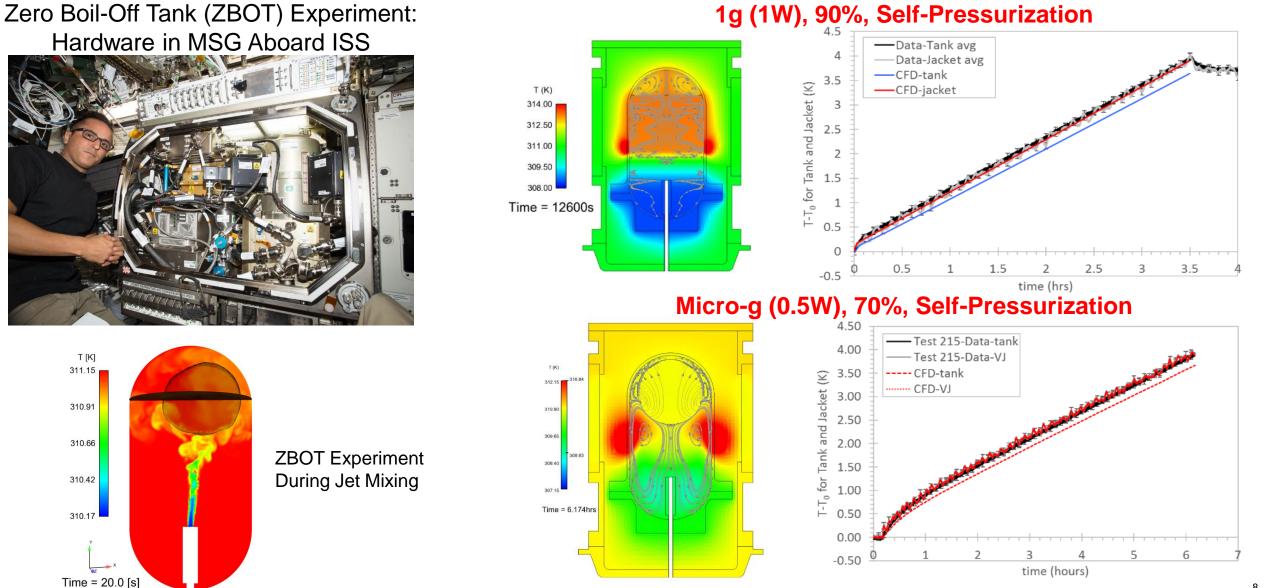
Construction and Emplacement


Reactant Processing and Storage



Hydrogen

Zero Boil-Off Tank (ZBOT) Experiment



Purification and Recovery

Zero Boil-off Cryogenics

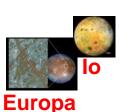
Thank you for your attention.

Questions?

Major Challenges of Solar System Missions

Extreme Environments in Planetary Missions

- Some missions require high radiation resistant power systems
- Outer planetary surface missions require low temperature power systems
- Some outer planetary missions require power systems that can operate in deep space and in dense or tenuous atmospheres


Triton

-250

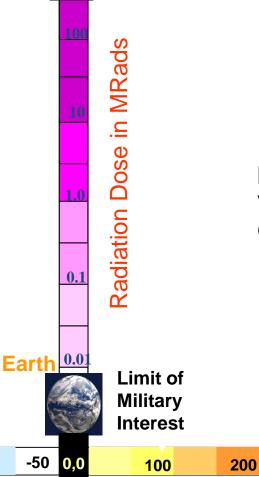
Pluto

NASA Interest

-200

Mars

Limit of


Militarv

Interest

-100

Titan

-150

Inner planetary missions require power systems that can operate in very high temperature environments

400

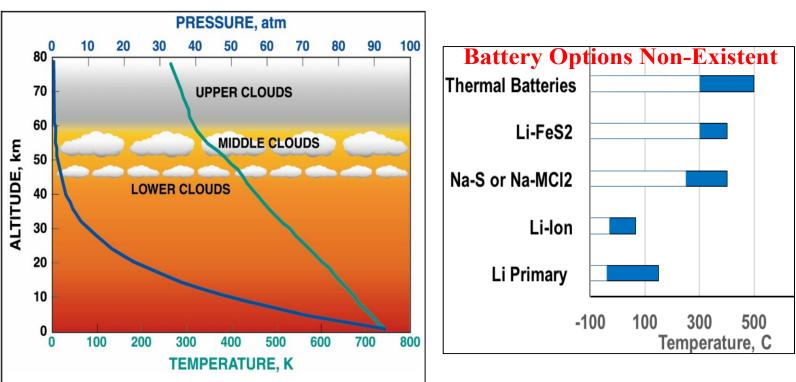
NASA Interest

300

Representative Examples of Aeronautics Mission Requirements

Mission	Number of Passengers	Typical Range	Power Level	Specific Energy	EAP Configurations
Urban Mobility	≤ 4	< 50 miles	200-500 kW	250 – 400 Whr/kg	 All electric Hybrid Electric
Thin Haul	≤ 9	< 600 miles	200-500 kW	300 – 600 Whr/kg	Hybrid Electric
Short Haul Aircraft	40-80	< 600 miles	500-1500 kW	300 – 600 Whr/kg	Hybrid Electric
Single Aisle	150-190	900 mile typical mission, 3500 mile maximum range	1000-5000 kW	750 – 1000 Whr/kg minimum	Hybrid ElectricTurbo Electric

In-situ Venus Missions

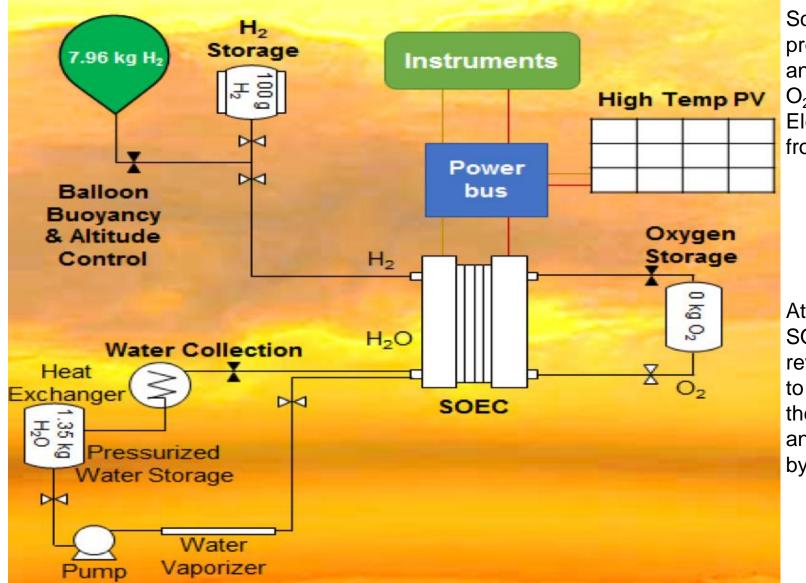

The Need for In-Situ missions:

Despite years of exploration, major questions remain:

- What is the precise chemical composition of the atmosphere and how does it vary with location and altitude?
- When and How did the Greenhouse effect occur on Venus
- How did the atmosphere of Venus form and evolve?
- What are the morphology, chemical make-up, and variability of the Venusian clouds and their impact on the climate?
- What are the processes controlling the atmospheric super-rotation?
- What are the processes governing Venus seismicity and its interior structure?
- How have the interior, surface, and atmosphere interacted as a coupled system over time?

The Problem

- Hostile environment of high temperature and pressure (465°C and 92 atm of CO₂) makes surface and low-altitude missions challenging.
- Cloud opacity limits orbital/balloon observations
- Conventional power sources, PV or RTG may not be applicable. New power technologies desired to enable missions



New Power Concept for Variable Altitude Venus Balloon Operation

Altitude Control

- H₂-filled balloon for buoyancy and altitude control (60-15 km)
- To Ascend: move H₂ from hydride into balloon
- To Descend: move H₂ from balloon into hydride

Solar array powers the probe at high altitude and generates H_2 and O_2 with Solid Oxide Electrolysis Cell (SOEC) from stored H_2O

At low altitudes, the SOEC operates reversibly as a Fuel Cell to power the probe from the stored H_2 and O_2 and stores the byproduct H_2O

Portability of Terrestrial Technology to Aerospace Applications

NA	SA)
$\left \right\rangle$	

	Component	Aerospace TRL Level	Portability of Terrestrial Technology to Aerospace Applications	Remaining Technical Challenge	
	Electrochemistry	9	High		
Electrolyzer	Materials	5+	High	High Pressure, Mass	
Technology	Seals	5+	High	High Pressure, Mass	
Ļ	Gas Management	5+	Moderate	High Pressure, Mass	
	Flow Fields	5+	High		
Fuel Cell	Bipolar Plates	5+	Moderate	O ₂ vs air	
Technology	Materials	5+	Moderate	O ₂ vs air	
reennoigy	Electrochemistry	5+	Low	O ₂ vs air, Performance	teo
Ļ	Water Management	5+	Low	Flow Rate, µg	wi
Reactant	Fluidic Components	8+	Moderate	O ₂ vs air	ap
Storage	Procedures	5	Moderate	O ₂ vs air, Performance	the
and	Thermal	8+	Moderate	μg, Vacuum	
Management	Materials	8+	Low	O ₂ vs air	E
	Water Management	5+	Low	Ο ₂ vs air, μg	te
	Hardware/PCB	8+	High		ar
=C / EZ / RFC	Power Management	8+	High		sp
System -	Structure	8+	High		re
Avionics	Thermal	8+	High		
L	Instrumentation	8+	Moderate		

NOTE: Not all relevant technologies exist within the same application nor are at the same TRL.

Elements of multiple terrestrial applications are required to meet specific NASA mission requirements.

In-situ Resource Utilization (ISRU)

Water (Hydrogen)

Moon

Icy Regolith in Permanently Shadowed Regions (PSR)

Solar wind hydrogen with Oxygen

Minerals in Lunar Regolith: Ilmenite, Pyroxene, Olivine, Anorthite

Metals

- CO, CO₂, and HC's in **PSR**
- Solar Wind from Sun (~50 ppm)
- Minerals in Lunar Regolith
- Iron/Ti: Ilmenite
- Silicon: Pyroxene, Olivine, Anorthite
 - Magnesium: Mg-rich Silicates
 - Al: Anorthitic Plagioclase

Mars

Hydrated Soils/Minerals: Zypsum, Jarosite, Phylosilicates, **Polyhdrated Sulfates**

Subsurface Icy Soils in Midlatitudes to Poles

Carbon Dioxide in the atmosphere (~96%)

Carbon Dioxide in the atmosphere (~96%)

Minerals in Mars Soils/Rocks

- Iron: Ilmenite, Hematite, Magnetite, Jarosite, Smectite
- Silicon: Silica, Phyllosilicates
- Aluminum: Laterites, Aluminosilicates, Plagioclase
- Magnesium: Mg-sulfates, Carbonates, & Smectites, **Mg-rich Olivine**

Asteroids

Subsurface Regolith on C-type Carbonaceous Chondrites

Minerals in Regolith on Stype Ordinary and **Enstatite Chondrites**

Hydrocarbons and Tars (PAHs) in Regolith on Ctype Carbonaceous Chondrites

Minerals in Regolith/Rocks on S-type Stony Iron and M-type Metal Asteroids

Uses

- Drinking, radiation shielding, plant growth, cleaning & washing
- Making Oxygen and Hydrogen
- Breathing
- Oxidizer for Propulsion and Power
- Fuel Production for **Propulsion and Power**
- Plastic and Petrochemical Production
- In situ fabrication of parts
- Electical power generation and transmission

Note: Rare Earth Elements (REE) and Platinum Group Metals (PGM) are not driving Resources of interest for Human Exploration