

Electrochemical Compression

2019 DOE Hydrogen & Fuel Cells Program Annual Merit Review Meeting

PI: Monjid Hamdan

VP of Engineering

Giner ELX, Inc.

89 Rumford Ave. Newton, Ma. 02466 April 30th, 2019 Project ID: in0005

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start: Oct. 1, 2016
- Program Novation: Apr.-Dec., 2017
- Project End: June 30, 2020
- **Percent Complete:** 40%

Budget

- Total Project Budget: \$3.52MM
 - **Total Federal Share:** \$2.81MM
 - **Total Recipient Share:** \$0.71MM
 - **Total DOE Funds Spent*:** \$1.36 MM
 - * As of 12/31/2018

Technical Barriers (Advanced Compression)

B. Reliability and Costs of Gaseous Hydrogen Compression

Technical Targets: Small Compressors: Fueling Sites (~100 kg H₂/hr)¹

Characteristics	Units	2015 Status	2020 Target
Availability	%	70-90	85
Compressor Specific Energy	kWh/kg	1.60 ²	1.60 ²
Uninstalled Cap. Cost ²	\$	275k	170k
Annual Maintenance	% of Capital Cost	8	4
Lifetime	Years		10
Outlet Pressure Capability	bar	950	950

¹ FCTO Multi-Year Research, Development, and Demonstration Plan (2015). ² 100-bar delivery/Commercial mechanical compressors are >6-8 kWh/kg (@7-bar delivery).

Partners

- National Renewable Energy Laboratory (National Lab) Membrane/System Validation
- **Rensselaer Polytechnic Institute (Academic)**
- Gaia Energy Research Institute (Private)
- Giner, Inc. (R&D/Private)

Collaborations

- **TÜV SÜD America**
- Intertek

- Membrane Development
- Techno-Economic Analysis
- System Development & Assy
- Codes/Stack Certification
- Codes/System Certification

NERELX

Relevance

Overall Project Objectives

 Develop/demonstrate electrochemical hydrogen compressor (EHC) to address critical needs of lower-cost, higher efficiency, and improved durability

FY 19 Objectives

- Engineer stack & cell components for 12,688 psi (875 bar) operation
- Scale-up membranes, MEA, Stack hardware
 - Assemble EHC Stack and verify EHC stack operation at a pressure of 875 bar.
- Initiate design of EHC prototype unit
- Optimize stack hardware and demonstrate cell performance ≤ 0.250 V/cell at current densities ≥1,000 mA/cm²

Impact

- Low cost, reliable, high pressure hydrogen to support FCEV penetration
 - Compressor reliability is a major concern for enhanced use of high pressure hydrogen systems and threatens the deployment of a hydrogen infrastructure

High Pressure Stack

EHC Background

EHC: Benefits & Uses

- Solid State, No moving parts
 - Improves downtime
- No membrane degradation (no O₂)
 - Enables use of low-cost Aromatic membranes
- Cross-cutting technology
 - □ Fuel Cells, Electrolyzers
- Alternative applications:
 - □ Home/Roadside-Refuelers
 - Hydrogen Purification/Separation (eg. Storage/Natural Gas appl.)
 - □ Hydrogen Circulation (Refrigeration)
 - □ H₂ Sensor Applications
 - Dever Generation (Reversible)

Efficient, stable, high pressure, & high current EHC operation requires:

- Water Management
 - Difficult under varying operating parameters $(P_i, P_o, T_i, Current, H_2O_d)$
 - Leads to catalyst flooding or membrane dehydration
 - High electro-osmotic drag (EOD) in conventional membranes; 6X higher than can be supplied by humidification

Thermal Management

- □ Limits to operating current density
- Individual cell cooling required
- Mechanical Strength
 - □ Stack hardware, membranes, sealing

Approach: Program Overview

Aromatic membranes: Synthesize membranes with: Low Electroosmotic Drag & gas permeation	
• Compatible support structures • Improve cell voltage performance • Demonstrate 0.25V/cell @ 1A/cm ² , 5000+ psi	
Water management membrane (WaMM) : Provides passive water management	0
 besign high pressure stack & cell components Engineered flow distributor plates Provides heat removal of each individual cell Enables variable H₂ Feed (1-100 bar) Enables dead-ended feed Scale-up active area of stack (& membranes) Build/Demonstrate 875+ bar stack operation 	
 Build 0.5 kg-H₂/hr prototype system Lab-scale demonstration of the technology Increase TRL level from 3 to 5 	System will meet all these standards

NERELX

G

Approach: YR1 Tasks & Milestone Progress

Task No.	Task Title	Mile- stone	Milestone Description (Go/No-Go Decision Criteria)	Progress Notes	Percent Complete
1	Test Hardware Development	M1.1	Fabricate 50cm ² test hardware for evaluation of HC and WaMM membranes	 Designed & fabricated test hardware to accommodate distributor plate and WaMM 3 sets of hardware delivered to NREL for testing & validation of membrane samples 	100%
2	Hydrocarbon Membrane Fabrication, WaMM Fabrication	M1.2	Synthesis Aromatic membranes with IECs in the range of $1.8-2.6 \text{ mmol/g}$, protonic conductivity >0.1 S/cm, and electro-osmotic requirement <50-80% than conventional PFSA PEMs Synthesize WaMM with water flux of ≥0.039 g/min-cm ² and conductivity ≥ 1.0 S/cm membrane	 Partially fluorinated Aromatic membranes synthesized (on-going): Conductivity: 0.106 S/cm√ EOD: 50% of PFSA√ IEC: 1.4 / 2.0 mmol/g demonstrated√ Optimize/reduce back diffusion (on-going) WaMM synthesized: Water flux: ≥0.1 g/min-cm² √ Through-plane conductivity: > 1.0 S/cm√ 	100% But continue investigation at 900 bar
	Evaluate Cell Performance	M1.3	Voltage performance 250 mV @ ≥ 1,000 mA/cm² (combined Task 1, 2, & 3)	EHC cell voltage performance @ 1,000 mA/cm ² (300 psig): • 170 mV/cell (PFSA) • 105 mV/cell (Aromatic),	100%
3	Preliminary Stack Design	M1.4	Complete preliminary design of scaled-up stack (300 cm ²) for 875 bar operation	Complete (May require fine tuning based on results from 50 cm ² testing at 875 bar)	100%
4	Desktop Review of EHC System	M1.5	Complete Desktop Review of EHC system	Intertek 1 st review round complete. Report submitted	100%
Go/No-Go Decision Y1		on Y1	Demonstrate EHC voltage performance of ≤ 250 mV/cell @ ≥ 1000 mA/cm ² in a 50 cm ² stack platform utilizing advanced 'Aromatic' membranes	Successfully operated EHC at 350 Bar ≤ 0.250V @ ≥ 1,000 mA/cm ² Demonstrated Aromatic membrane operation at 0.217V @ 1000 mA/cm ² , 350 bar	\checkmark

Approach: YR2 Tasks & Milestone Progress

Task No.	Task Title	Mile- stone	Milestone Description (Go/No-Go Decision Criteria)	Progress Notes	Percent Complete
5	Cell Components Scale-up Stack / Cell Components	M2.1	Scale-up HC membrane in Task 1 to 300 cm ²	 Developed new membrane architecture and sealing technique 20,000 psi (1,400 bar) seal demonstrated Sealing under high clamping loads (not effected by thermal or pressure cycling) Demonstrated scale-up to 300 cm² Complete, but additional optimization on HC membranes required Bubble-tight seal for 875 bar stack developed & demonstrated 	50%
		M2.2	Fabricate scaled-up stack hardware including internal components (flow distributor plates). Stack will be designed to accommodate 300 cm2 hydrocarbon membranes and WaMM.	Demonstrated method to scale-up unitized cell architecture • Issues with stack component delivery times	10%
	Preliminary Stack Design	M2.3	Assemble EHC Stack and verify EHC stack operation at a pressure of 875 bar	 Fabricated components for a 50 cm² high pressure (875 bar) stack that will be used to fine tune the design of the 300 cm² Modification in distributor plate required. New parts received. On test. 1st run at 875 bar√ 	20%
6	Prototype System Design	M2.4	Complete preliminary design of lab- scale prototype unit. This includes delivery of P&ID and PFD diagrams	Initiated. P&ID, PFD, Layout, Component Selection, and HazOp Study under review by Intertek	65%
Scale- distrib area of Go/No-Go Decision Y1 operat voltag mV/ce		on Y1	Scale-up stack, membranes, and distributor plates to an active area of 300 cm. Demonstrate EHC operation at 875 bar and EHC cell voltage performance of ≤ 250 mV/cell @ ≥ 1000 mA/cm ²		

Progress- Aromatic Membrane/MEA Development

Hydrocarbon Membranes (BPSH)

- Inexpensive starting materials
- Reduces gas permeation by 1 order of magnitude
- Reduction in electro-osmotic drag transport

Biphenyl Series Membranes (BP-ArF4, BP-ArSA, BP-SA)

□ Similar benefits as BPSH, but include:

- Higher protonic conductivity at lower IEC with lower swelling in water
- Improved mechanical stability
 - Membrane support structures added for increased mechanical stability

MEA Fabrication & Catalyst Deposition at NREL

Supports

Support

Addition of Internal Membrane Supports

INERELX **Progress-Latest MEA Developments** 20,000 psi Development of High-Pressure Seals (1,400 bar)Demonstrated Sealing Pressures Membrane supports required for superior creep resistance; when operating pressure >2000 psi Difficult to maintain seal above 7000 7,000 psi psi with 'Traditional' membrane (480 bar) supports High operating pressures require large clamping loads and a 'Solid' 2,000 psi membrane surface to seal (140 bar) against **Developed & demonstrated NEW** membrane sealing technology for 875-

- bar EHC operation
 - Thermoplastic extension of membrane
 - Demonstrated sealing to 20,000 psi (1,400 bar)
 - NREL support in characterization and optimization of new support

'Solid' Supported Membrane (SSM)

Traditional

Dimensionally

Supported Membrane (DSM)

Progress-Latest MEA developments Scale-up of EHC Membrane

- SSM bonds directly to polymer membranes (while in the acid form). Demonstrated:
 - □ Sealing under high clamping loads
 - Resistance to pressure and thermal cycling
 - Dry assemblies (with Dry membranes)
 - Unitized Cell structures (1 piece/cell). Ease of assembly/cost reduction
- Non-contaminating
- Process applicable to PFSA & Aromatic membranes
- Demonstrated scale-up of MEA and SSM to 300 cm²

MEA Performance (5,000 psig) as a function of Inlet pressure

Demonstrated Capabilities of EHC

- Dead-ended H₂ Inlet feed
 - □ Simplifies system: no H₂ flow thru, No external humidification, and No H₂ recovery required

- Dry H₂ Inlet feed (humidified H₂ ok, will not improve performance)
- Variable inlet feed pressure up to 1,500 psi (100 bar), & Stable Cell Voltage at each inlet pressure
- High Voltage Efficiency to 2 kWh/kg-H₂!

MEA Performance (5,000 psig) as a function of Inlet pressure

Progress – Modeling EHC Performance

- Combined effect of iR-losses, Nernstian Penalty, Catalytic Activity, Ionic conductivity, and Back diffusion
- Increased power consumption at high operating pressure (back diffusion)
- Max efficiency at ~500 mA/cm²

Progress – Modeling EHC Performance

- Combined effect of iR-losses, Nernstian Penalty, Catalytic Activity, Ionic conductivity, and Back diffusion
- Increased power consumption at high operating pressure (back diffusion)
- Max efficiency at ~500 mA/cm²

Progress - EHC Stack Design & Fabrication

(875 bar)

Evaluation of high pressure components, Flow distributors & internal cell components, membrane strength/rupture testing

5,000 psi stack with Distributor and WaMM. (DSM membranes req'd)

Catalyst, Membrane & Cell-Component, **Testing & Validation**

875 bar Stack Novel Design Features

- Proof pressure design: 20,000 psi (1,400 bar)
 - Scale-up active area to 300 cm²
 - Utilizing low cost materials: SS
 - Design incorporates use of integrated distributor plate and WaMM, reduced part count
 - Enhanced bipolar plate design for 20 ksi capability

Proof-Pressure Testing

- Hydraulic pressure assembly rated to 50,000 psi
- Test enclosure assembled Measures deflection of endplate
- Stack successfully pressure tested to 20,000 psi (1,400 bar) with new 'SSM' MEA

Progress- 875 bar EHC Operation

875 bar

Operation!

- Stack designed with SS internal components
- Operates at inlet pressures ranging from 1 to 100 bar
 - Single stage compression to 875 bar
 - Can be operated above 875 bar based on proof pressure ratings
- Optimization of 875 bar hardware followed by scale-up

Progress- System Design

- Design Specs:
 - □ H₂ Flux Rate: 0.5 kg/hr
 - □ H₂ Inlet Pressure: 1-100 bar
 - □ H₂ Outlet pressure: 875 bar
 - □ Dimensions: 4'x4'x1'
- System reviewed by Intertek. Over 20 standards* apply. Influences how system is designed

Goal: Certification & commercialization of the technology

NERELX

GINERELX

Projected Compression Cost

H ₂ Compression Cost Contribution	Current Status (\$/kg)		
Capital Costs ¹	0.175	₽4	
Feedstock Costs ²	0.239 (1000 mA/cm ²) 0.114 (500 mA/cm ²)	Ţ 4	
Fixed O&M	0.004		
Variable Costs	0.001		
Total Cost (\$/kg) ³	0.419		

¹10 year lifetime, ²Based on electrical cost of \$0.057/kWh kWh_e/kg, ³Design Capacity: 100 kg-H₂/hr, 1,000mA/cm² EHC Operation. Assumes large scale production. ⁴Compared to previous year: CapEX & OpEx previously 0.196 & 0.305 \$/kg, respectively.

- Economics: determined using PEM-based system cost models
 - Feed Stock, based on Efficiency Range
 @ 350 bar:
 - 2.0 to 4.2 kWh_e/kg-H₂
 - Projected Operating Lifetime: designed to operate for a term of 10 years or more (> 20 years expected)
 - Use of SS components vs. Ti
- 10 year lifetime: Membranes are not expected to degrade due to lack of O₂ in system

Collaborations/Acknowledgements

Giner ELX, Inc. -Monjid Hamdan -Prime	Industry	Stack and system engineering, development, and operation. Fabrication and optimization of catalyst and membrane electrode assemblies. WaMM development and optimization. Testing & validation
National Renewable Energy Laboratory (NREL) -Bryan Pivovar -Subcontractor	National Lab	Membrane and cell component validation. Coordinate stack testing and optimization studies of membranes, cell components & materials. Testing of high-pressure EHC stack and system
Rensselaer Polytechnic Institute (RPI) -Chulsung Bae -Subcontractor	Academia	Development of mechanically-stable Aromatic PEMs which serve as a key material in this project.
Gaia Energy Research Institute LLC (Gaia) -Whitney Colella -Subcontractor	Small Business	EHC stack cost analysis and system-level analysis. Developing EHC cost estimates, techno-economic analysis (TEA), and life cycle assessment (LCA)
Intertek/TUV -Subcontractor	Nationally Recognized Testing Laboratory	Certification for System & Stack
Giner, Inc. -Subcontractor	R&D	System assembly, sub-component fabrication, PLC controls. Includes documentation for certification process

Department of Energy, DOE Fuel Cell Technologies Office (FCTO),

Ms. Neha Rustagi, Dr. Dave Peterson, Dr. Eric Miller

Dr. Sunita Satyapal

Summary

- Demonstrated EHC operation to a pressure of 875 bar
 - Demonstrated compression ratio of 875:1, single stage

Membrane Development:

- Designed MEA with new sealing properties;
 - Enables bubble-tight seal to 20,000 psi (1,400 bar) & Stack operation to 12,688 psi (875 bar)
 - Resistant to thermal & pressure cycling
 - Demonstrated scalability of MEA & seal to 300 cm², unitized cells, & dry build
- □ Reduced membrane back diffusion by > 50% in PFSA, 32%; Aromatic membranes
- □ Optimization: Demonstrated further improvements in cell voltage:
 - 0.159V/cell (100 bar inlet); Stack efficiencies to 2.0 kWh_e/kg-H₂ at 5,000 psi (350 bar)
 - Highest Efficiency for EHC operating at 5,000 psi (350 bar)
 - □ Further improvements expected in next round of aromatic membrane tests

Stack Development:

- Successfully designed, assembled, and operated a 875 bar EHC stack (50 cm² platform)
- Demonstrate proof pressure of 20,000 psi (1,400 bar)
 - Operates at an inlet pressure range of 1-100 bar, dead-ended feed, & dry H₂
- Reduced Stack Cost
 - Unitization of cell components (reduced part count/cell)
 - Combined Flow-Distributor and WaMM compartment into single component
 - $\hfill\square$ Use of SS cell components
- System Development:
 - Initiated procurement and assembly of 875 EHC system

NERELX

Future Plans & Challenges (FY2019-20)

Future Plans*

- Membrane: Fabricate aromatic membranes using SSM seal, integrate into 875 bar stack and evaluate
- Stack: Optimize internal cell components to replicate performance achieved in 350 bar stack, Scale up to 300 cm²
- **System**: Complete assembly of prototype system design
 - Initiate operation and system studies

Future Challenges

- Increase stack active-area to 300 cm²
 - Scale-up for aromatic membranes
- Further reduce stack costs
 - Endplate thickness & cost
 - Investigate techniques to reduce cell component fabrication costs
 - Possibility of stamping components
- Investigate embrittlement of cell components
- Determine effect of H₂ impurities
 - Giner ELX will conduct additional studies with impure H₂ sources
 - e.g. Removal, and compression, of hydrogen from NG source containing 5% H₂

Technical Back-Up Slides

Progress – 875 bar Stack Design – Endplate Scale-up

Minimize Endplate thickness with Bolt pattern