

Biomass to Hydrogen (B2H2)

Pin-Ching Maness (P.I.) Katherine Chou (Presenter) National Renewable Energy Laboratory April 30, 2019

DOE Hydrogen and Fuel Cells Program 2019 Annual Merit Review and Peer Evaluation Meeting

P038

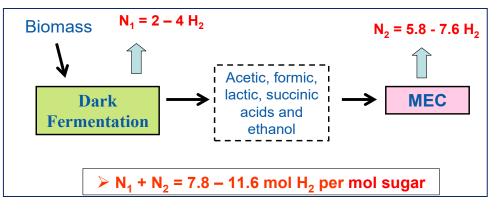
This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline and Budget

- Project start date: 10/1/2015
- FY16 DOE Funding: \$1M
- FY17 DOE funding: \$900K
- FY18 DOE funding: \$800K
- Total DOE funds received to date: \$2.7M
- The project will be closed out in FY19.

Barriers


- H₂ molar yield (AX)
- Feedstock cost (AY)
- System engineering (AZ)

Partners

- Dr. Bruce Logan
 Pennsylvania State University
- Drs. Steven Singer, Lawrence Berkeley National Lab (LBNL) and Ken Sale, Sandia National Lab (SNL)
- Dr. James Liao at UCLA (no cost)

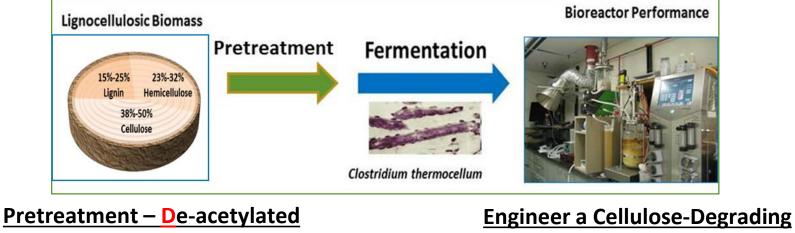
Relevance

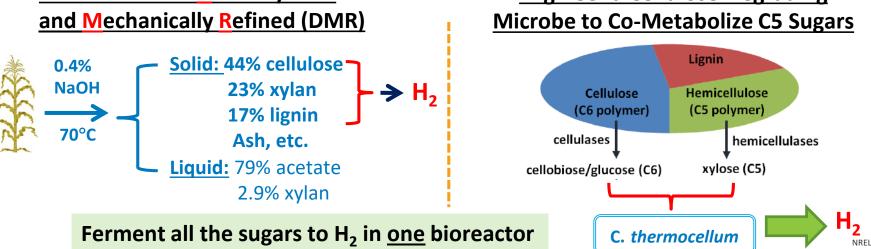
Overall Objective: Develop *direct* fermentation technologies to convert renewable lignocellulosic biomass resources to H₂.

Current Project Year Objectives (May 2018 – April 2019)

Addressing feedstock cost barrier

 Improve biomass utilization by converting cellulose (6-carbon sugar) and hemicellulose (5carbon sugar) to produce H₂ either via co-culture systems or genetic engineering of *Clostridium thermocellum*.

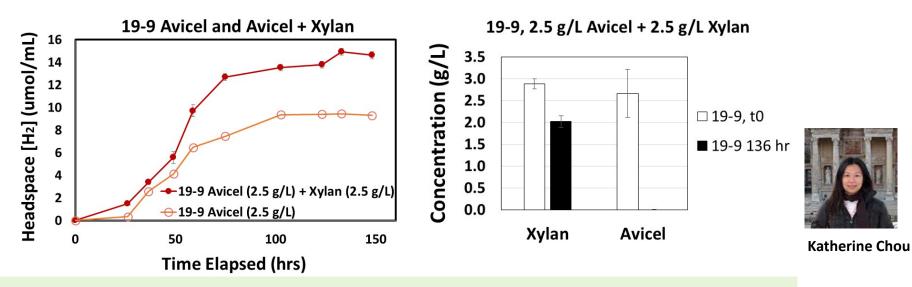

• Addressing H₂ molar yield barrier


- Had generated a series of competing-pathway mutants with either increased rate or yield of H₂. Using ¹³C-metabolic flux analysis, we aim to understand how these metabolic changes influence H₂ production to guide future genetic engineering strategies.
- Microbial Electrolysis Cells (MEC): Replace the costly platinum cathode with inexpensive materials while still obtaining high rate of H₂ production, ultimately using fermentation waste – also addressing waste removal.

This project addresses key DOE Technical Targets and leverages DOE Bioenergy Technologies Office (BETO) investment in biomass pretreatment.

Approach Task 1: Bioreactor Performance

• **Approach:** Optimize bioreactor in batch and fed-batch modes by testing parameters such as corn stover lignocellulose loadings (DMR pretreatment), and hydraulic retention time (HRT), using the cellulose-degrading bacterium *Clostridium thermocellum* engineered to co-utilize both cellulose and hemicellulose.



Task 1. Accomplishments and Progress: Increased Xylan Biomass Utilization by 29% and H₂ Production by 45%.

Optimize and improve biomass utilization by 20% by developing methods to convert both C6 and C5 sugars to H_2 . We will achieve this by ether using <i>C. thermocellum</i>		Complete

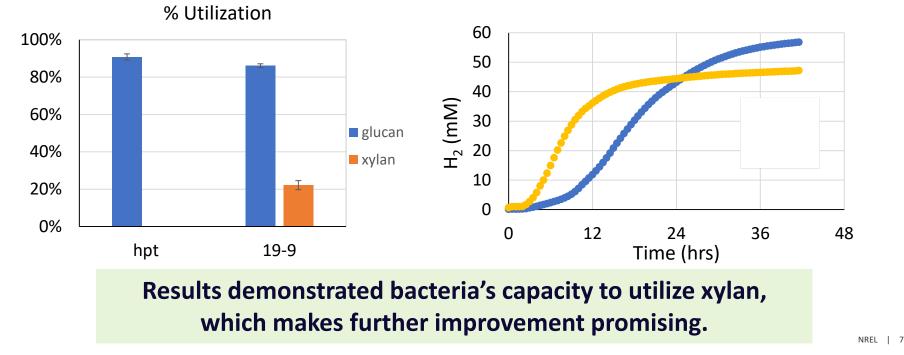
- Use two strategies to improve biomass utilization:
- The first approach is to use a binary co-culture system (reported in 2018 AMR).
- A second approach is to express foreign xylose-pathways genes (*xylAB*) to metabolize xylose, followed by adaptive evolution to utilize xylan (complex xylose).
- *C. thermocellum* evolved *xyIAB* strain (19-9) indeed utilized **29%** more xylan and produced 45% more H₂ by co-utilizing both cellulose and **xylan**.

Utilizing the hemicellulose portion of biomass will lower feedstock cost.

Accomplishments and Progress : Increased H_2 production <u>Rate</u> by 15% and total H_2 by 16% in pH-controlled Bioreactor

FY19 Q1 Milestone	Via laboratory evolution, we have evolved the xylose-engineered strain to also degrade the more complex xylan, yet its performance in H_2 production has not been demonstrated in bioreactors. We will quantify H_2 production in pH-controlled bioreactor and obtain up to 10% increase in H_2 production (over a baseline rate of 1 L/L/d at 5 g/L substrate loading) as an indication of xylan utilization. We will also determine xylan utilization and profile metabolites to guide additional engineering strategies to improve xylan utilization.	12/2018	Complete
----------------------	--	---------	----------

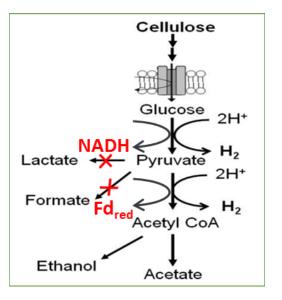
- The 19-9 evolved strain yielded an average H₂ production rate (over 43 h of fermentation) of 1024 mL/L-d using both cellulose and xylan, a 15% increase over the parental controlled strain (Δhpt) using cellulose only, and with a rate of 871 mL/L-d.
- The 19-9 evolved strain also produced **16% more** total H₂.

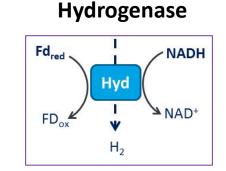

Strain	H ₂ Production per Batch	Average H ₂ Production Rate	Maximum 24 hr H ₂ production rate	
	(mL L ⁻¹)	(mL L ⁻¹ d ⁻¹)		
hpt	1506.04 +/- 32.08	870.94 +/- 18.54	1409.07 +/- 46.84	
19-9	1792.61 +/- 20.41	1024.34 +/- 11.66	1504.35 +/- 46.42	
% improvement	16%	15%	6%	

Lauren Magnusson

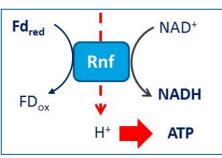
Accomplishments and Progress : Increased Xylan Consumption by 22% in pH-controlled Bioreactor

- The 19-9 evolved strain utilized 22% of the xylan, consistent with the increases in both rate (15%) and total (16%) H₂ production.
- Strain 19-9 displayed a lag in H₂ production which can be improved via further adaptation.
- Both the control (△hpt) and 19-9 mutants were derived from C. thermocellum DSM 1313 which can be manipulated genetically. The benchmark rate (1 L/L-d) was obtained from C. thermocellum ATCC 27405 which lacks a genetic system.

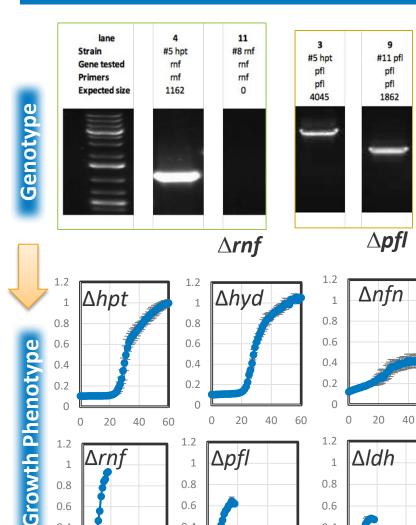



Approach

Task 3: Generate Metabolic Pathway Mutants


Approach: Redirect metabolic pathways to improve H₂ molar yield via developing genetic methods.

- Δpfl : Blocking formate carbon-competing pathway led to **57% increase** in <u>rate</u> of H₂ production (2016 AMR accomplishment).
- Δrnf : Manipulating electron-competing pathway led to **35% increase** in <u>total</u> H₂ production (2017 AMR accomplishment).


Transhydrogenase

 13 C-based metabolic flux analysis could probe metabolic changes responsible for increased H₂ production and guide genetic engineering.

FY19 Q2 Milestone	Compare growth patterns of the wild-type and mutant strains lacking either the carbon (lactate, formate) competing pathway or deficient in electron inter-conversion (ferredoxin to NADH) by growing them in two different substrates, glucose and cellobiose of different energetics. The outcome will reveal how microbe manage carbon and electron flow toward increasing H ₂ production. (NREL).	3/2019	Complete
----------------------	---	--------	----------

Task 3 Accomplishments and Progress: High-throughput Phenotyping Analysis on H₂ Production Mutants

0.4

0.2

0

20

Hours

40

60

0.4

0.2

0

0

20

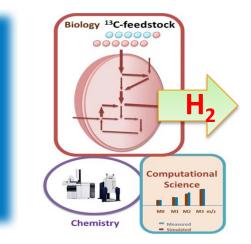
40

60

60

0.4

0.2

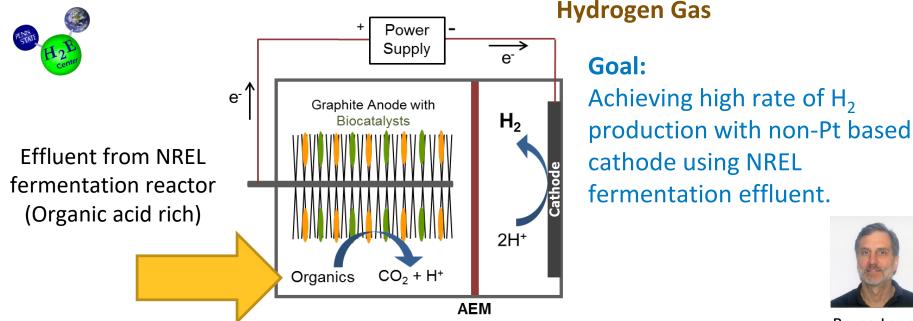

0

0

20

40

60


Wei Xiong

- Goal: Unravel metabolic changes responsible for increased H₂ production via ¹³C-metabolic flux and growth analysis, using high-throughput GC-MS and data automation pipeline
- **Progress**: (1). Mapped the ¹³C-flux of Δhpt as the baseline; (2). Analyzed the growth phenotype of H₂ production mutants.

NKEL |

Approach Task 4: Electrochemically Assisted Microbial Fermentation

Microbial Electrolysis Cell (MEC) – Conversion of Organic Waste to

Bruce Logan

	Milestones (PSU)	Completion Date	Status
FY19	Evaluation of alkaline pH cathode catalysts and select new alkaline- optimized anion exchange membranes. Using a thinner cathode chamber and optimizing hydroxide ions crossover should improve overall performance by 30% (FY18 Q4; PSU*).	*1/2019 – Q4 of Penn State	Complete

Accomplishments and Progress : Alkaline Cathode Catalyst and Membrane Resistance

Goal: determine if alkaline pH could improve H₂ production

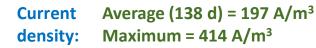
• Use activated carbon Ni (AC-Ni) cathodes with 8.8 mg/cm² Ni salt loading.

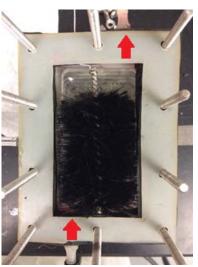
2 g/L acetate	H ₂ Production	
рН 7	0.31± 0.02 L/L-d	
		31% increase
pH 12	0.4 ± 0.02L/L-d	S1% Increase

Goal: determine if anion-exchange membrane is the limiting factor

 Penn State has developed the "Electrode Potential Slope (EPS) to quantify internal resistance of various components including membrane.

Resistance	mΩ m²
Total	120
Felt Anode	71 ± 5
Solution	25
Cathode	18 ± 2
Membrane	6 ± 5

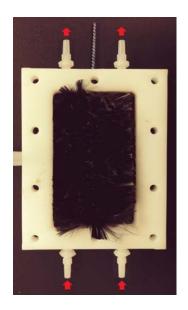

<u>Conclusion</u>: With its low resistance, membrane is NOT a limiting factor, and will not test/select other membranes per the milestone.


Accomplishment: Achieve Stable Hydrogen Production of >2 L-H₂/L-d Over 90 Day Period

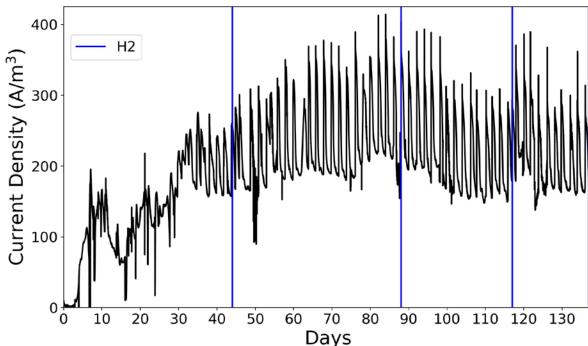
New MEC
design:Reduce number of brush anodes
from 7 to 1 to "fill chamber.

Anode: 1 brush anode (4.5cm diameter) Cathode: 2 stainless steel wool cathodes Electrolytes: both recirculated

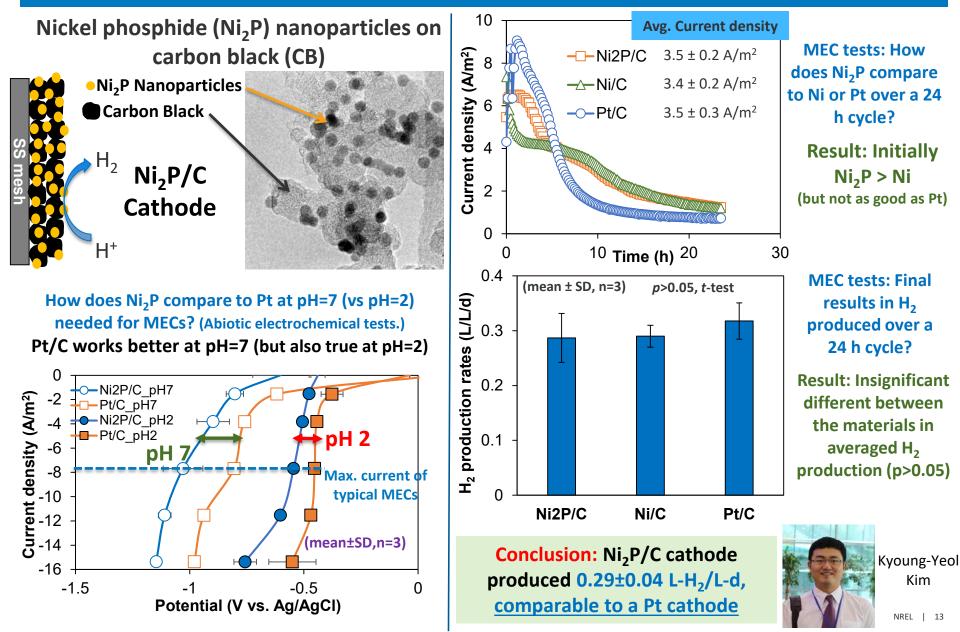
HydrogenAverage (90 d)= $2.62 L-H_2/L-d$;productionMaximum = $3.76 L-H_2/L-d$



H₂ production <u>average</u> rate not yet increased by 30% over previous levels, but <u>maximum</u> rate was, and reactor stability was greatly improved


Future directions:

Increase anode brush diameter to 5.5 cm to completely fill the anode chamber



Emmanuel Fonseca (MS/PhD Student)

Task 4 Accomplishments and Progress: Cathode Chamber Optimization: Replace Pt with alternative material

Accomplishments and Progress: Responses to Previous Year Reviewers' Comments

This project was presented as a poster but was not reviewed during the 2018 AMR

Collaboration and Coordination

• Task 1 (Bioreactor)

Drs. Ali Mohagheghi and Melvin Tucker, National Bioenergy Center at NREL: provide DMR pretreated corn stover and their characterizations - leveraging DOE BETO funding.

• Task 2 (Ionic Liquid) – discontinued in FY17

Drs. Steve Singer (LBNL) and Kent Sales (SNL): conducted biomass pretreatment using ionic liquid as a complementary pretreatment approach to lower feedstock cost.

• Task 3 (Genetic Methods)

Dr. James Liao of UCLA in pathway engineering of *C. thermocellum* – leveraging DOE Office of Science funding.

• Task 4 (MEC)

Dr. Bruce Logan at Penn State University: microbial electrolysis cells to improve H_2 molar yield.

Remaining Challenges and Barriers

Task 1. Bioreactor Performance

- High solid-substrate loading (175 g/L) is needed to lower H₂ selling price, which might present a challenge to ensure sufficient mixing.
 - This challenge will be addressed by research in a separate project BioHydrogen Consortium, carried out by Lawrence Berkeley National Lab.

Task 2. Fermentation of Pretreated Biomass using Ionic Liquid (LBNL/SNL)

• This task was closed out in FY17/Q1.

Task 3. Generate Metabolic Pathway Mutant in *C. thermocellum*

- Improve the rate of <u>xylan</u> utilization in engineered strain to improve biomass utilization – addressed by research in a separate project "BioHydrogen Consortium"
 - Continue with adapted evolution strategy feeding xylose/xylan and select fast grower in xylan.
 - Targeted insertion of foreign genes to overcome the rate-limiting step(s) of xylan utilization.

Task 4. Electrochemically Assisted Microbial Fermentation of Acetate (PSU)

• The Penn State subcontract ended in January 17th, 2019.

Proposed Future Work: project is scheduled to close out in FY19/Q4

Task 1 (NREL)

• Subject 19-9 strain to laboratory adapted evolution by continuously evolving it in avicel (earlier evolution using cellobiose) and xylan and test H₂ production in bioreactors.

Task 2 (LBNL/SNL)

• None. Task 2 was discontinued in FY17/Q1.

Task 3 (NREL)

 Adapt the various *C. thermocellum* competing-pathway mutants to grow in cellobiose for comparison of carbon flux channeling through the different metabolic pathways leading to increased H₂ production. The outcome will guide metabolic engineering strategies to further improve H₂ production (FY19 Q3 Milestone).

Task 4 (Penn State):

• None. The Penn State subcontract ended on January 17th, 2019.

<u>**Closeout Report.**</u> A project closeout report will be submitted to DOE in FY19/Q4, documenting progress in the performance period of FY16-FY19 (FY19 Q4 Milestone).

Technology Transfer Activities

Technology-to-market or technology transfer plan or strategy

- Air Product and Chemicals, Inc.
 - Main interest in H₂ from biomass can be low carbon or even potentially carbon neutral; have funded the Logan lab in the past for work on MECs and RED for H₂ production from wastewaters
 - Large-scale process of greatest interest, but currently there are no larger reactors.
 - Cost needs to be near to, or lower than, making H₂ from alternative sources (natural gas).

Plans for future funding

- Pursue opportunities to collaborate with other national Labs and industries for potential future funding support.
- Network with biofuels industry to expand the use of H₂.
- Advocate the advantages of "green" H₂ rather than fossil-fuel derived H₂

Patents, licensing

- A Record of Invention (ROI-14-70) is filed for developing the proprietary genetic tools tailored for *C. thermocellum*.
- A second ROI-15-42 has been filed for generating xylose-metabolizing strain, leading to enhanced biomass utilization.

Summary

Task 1

- Using a laboratory-evolved strain we observed a 15% increase in rate of H₂ production and 16% in total H₂ production by co-fermenting both cellulose and xylan, benchmarking the progress.
- The evolved strain utilized **22%** more xylan, which accounts for the above increases.
- The outcomes lower the feedstock cost by converting more biomass sugars to H_2 . **Task 2:** Closed out in FY17/Q1, not meeting GNG.

Task 3

- The genotype of the various mutants were verified via PCR.
- Using a 24-well plate Microplate Reader, we performed semi high-throughput growth of the various *C. thermocellum* mutants in cellobiose which will be used for ¹³C-metabolic flux analysis.

Task 4

- Alkaline pH improved H_2 production by 31%.
- Achieve stable H₂ production of >2.6 L-H₂/L-d over 90 day period by increasing anode brush size.
- Anion exchange membrane is not a rate-limiting step in H₂ production.
- Ni₂P/C cathode produced 0.29±0.04 L-H₂/L-d, <u>comparable to a Pt cathode</u>.

Thank You

www.nrel.gov

Publication Number

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Technical Back-Up Slides

(Include this "divider" slide if you are including back-up technical slides [maximum of five]. These back-up technical slides will be available for your presentation and will be included in Web PDF files released to the public.)