

2019 DOE H₂ and Fuel Cell Annual Merit Review Meeting

High-Temperature Alkaline Water Electrolysis

Hui Xu (PI) and Kailash Patil

Giner Inc.

Prabhakar Singh

University of Connecticut

May 1, 2019

Project # P143

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

- Project Start Date: Jan. 1, 2017
- Project End Date: Dec. 31, 2019

Budget

- Overall \$ 1,722,885
 - DOE share \$ 1,375,123
 - Contractors share \$ 347,762
 - Spent \$ 970, 105 (by Feb. 2019)

Giner Researchers

Dr. Kailash Patil, Steve McCatty, and Winfield Greene

Collaborator

- University of Connecticut (Sub.)
- Giner ELX (Sub.)
- Zircar Zirconia, Inc. (Vendor)

Barriers Addressed for HTWE

- Operating cost: prohibitive electricity consumption for water electrolysis
- Capital cost: associated with PGM or expensive high temperature materials

Technical Targets

- Composite electrolyte OH⁻ conductivity > 0.1 S/cm in temperature of 300 to 550 °C
- Per-cell area-specific resistance (ASR) of ≤ 0.2 Ohm-cm² at 300 to 550 °C using a membrane thickness of 200 μm.
- Stack electrical efficiency > 90% LHV H₂ with current density at 1.0 A/cm²

Relevance

Overall Project Objectives

To develop high-temperature alkaline electrolysis using molten hydroxides in porous metal oxide matrix

FY 2018-19 Objectives

- Develop electrolyte support metal oxide matrix
- Evaluate the matrix materials stability in hydroxide electrolyte at 400-550 °C.
- Demonstrate single cell performance <1.5 V at 1,000 mA/cm² at temperature <550 °C.
- Reduced the electrolyzer cell temperature of 550 °C to 450 °C.

Impact

Reduce the capital and operating costs of water electrolysis to meet DOE goals and to make water electrolysis more viable and competitive against other technologies

DOE: Distributed Forecourt Water Electrolvsis

- □ Feedstock costs (electricity) consists of 50% of total cost
- High-temperature electrolysis offers the advantage of lower energy requirements due to both faster kinetics and greatly reduced equilibrium voltages

Technical Approaches

Major Advantages

- Flexible temperaturesintermediate T compared to PEM and SO system)
- Less expensive materials

Key to Success

- Porous metal oxide matrices resistant to molten hydroxides
- Microstructures of the porous oxide matrices determine whether they can successfully retain molten hydroxides
 - thickness, porosity and pore structures

Approach: 2018-19 Tasks and Milestone Progress

Task No.	Task Title	Milestone Description	Progress Notes	Status
Go/No-go Decision: FY2018 (06/30/2018)		Achieve single cell performance V < 1.50 V at 1.0 A/cm ² or 1.4 V at 0.6 A/cm ²	Testing with different cell component configuration Developed gas sealing materials Suppressing corrosion of bipolar plates	100%
1	Stability of Metal Oxide Materials	Select stable metal oxide in molten hydroxide electrolyte	Identified stable metal oxide in molten LiNa and NaCs electrolytes	100 %
2	Corrosion Mechanism of Non-active Components	Optimize corrosion of current collector in molten hydroxide electrolyte	Performed hot corrosion/oxidation of various metal materials (SS- 316 and Ni-metal) in molten hydroxide	90 %
3	Assemble and Test single cells	Complete testing at least 5, 25 cm ² cells with composite electrolytes Performance and durability test	Designed and construct HT- electrolyzer test station Designed button cell area of 13 cm ²	80 %
4	Perform Energy Balance	Perform compression cost Energy balance for 1MW mass and energy balance	Conducted compression cost based on 1 A/cm ² , active area and operating current density Performed energy balance at 450 °C, 1.50V/cell and 550 °C, 1.40V/cell	90 %

Task change (upon DOE approval): Instead of building a short satck, more work is on singe cells towards longer durability and lower temperature operations

<u>Thermochemical Calculations:</u> Alkali Hydroxide Melt Chemistry

Eutectic composition			LiOH NaOH	LiOH	кон	NaOH KOH
	Eutectic compos	30-70	18-82		52-48	
Eutectic melting temperature (°C)			220	225	5	170
	Temperature (°C)	LiOH	KO	1		NaOH
	450	4.0 X 10 ⁻⁷ mg/h	n 1.9 X 10 ⁻	⁶ mg/h	5.6	X 10 ⁻⁶ mg/h
	550	3.2 X 10 ⁻⁵ mg/h	n 3.6 X 10 ⁻	⁵ mg/h	3.2 X 10 ⁻⁴ mg/h	
	650	9.2 X 10 ⁻⁴ mg/h	n 3.4 X 10 ⁻	3.4 X 10 ⁻⁴ mg/h		X 10 ⁻³ mg/h

Reduction in hydroxide vapor pressure can be achieved by 2-3 orders of magnitude in lowering of temperatures from ~600°C to 400°C.

6

Accomplishment Stability of Metal Oxides in Molten Hydroxides

• Experimental test set up designed for **matrix stability** test

Matrix stability test set up at UConn

Experimental Conditions

Matrix Materials	CeO ₂ /YSZ/LiAIO ₂ /Li ₂ ZrO ₃ powder		
Alkali Hydroxides	Molten LiNaOH and NaCsOH		
Atmosphere	3-90%H ₂ O-N ₂		
Temperature	550 – 600 °C (3°C/min)		
Immersion time	50 - 100 h		

Phase stability of CeO₂ in molten LiNa and NaCs hydroxide at 550 °C in air for 50 h

No phase transformation of CeO₂ was observed in molten LiNa and NaCs hydroxide at 550 °C in air for 50 h.

Stability of CeO₂ in Molten Hydroxides

Surface morphology of CeO₂ in molten LiNa and NaCs hydroxide at 550 °C in air for 50 h

As received bulk fibers

Molten (LiNa)OH

Fibers Particle growth Particle agglomeration

- The CeO₂ bulk fiber morphologies showed rapid agglomeration and particles growth was observed in molten hydroxide medium.
- □ CeO₂ fiber transformed to the particles during exposure of hydroxide medium

Molten (NaCs)OH

Stability of YSZ in Molten Li/Na Hydroxide

> YSZ in Li/NaOH at 550°C in 3%H₂O-N₂ for 200 h

GINER

UCONN

YSZ in Li/NaOH at 550°C in air for 100 h

Major phase: YSZ-phase
 Minor phases: t-Li₂ZrO₃ and Li₄ZrO₄

Surface morphology: SEM images

Before stability (raw powder, spray dried process)

After stability test of 200 h

- Agglomeration and particles growth due to molten hydroxides
- New phases formed after exposures to molten hydroxides

9

Stability of Li₂ZrO₃ in Molten Hydroxides

Phase stability of Li₂ZrO₃ in molten LiNa and NaCs hydroxide at 550 °C in air for 50 h

HINER

Phase stability of Li₂ZrO₃ in molten LiNa hydroxide with different steam ratio

- No phase transformation of Li₂ZrO₃ was observed in molten LiNa and NaCs hydroxide at 550 °C in air for 50 h.
- The Li₂ZrO₃ material is stable phase was observed during the exposure of 50 and 100 h in LiNaOH under different steam ratio (3%-90% H₂O-N₂).

Li₂ZrO₃ will be used as the next generation material to extend the matrix lifetime 10

Stability of Li₂ZrO₃ in Molten Hydroxides

As received powder

GINER

(NaCs)OH at 550°C for 50 h in air

LZO in Molten (Li/Na)OH

UCONN

3%H₂O-N₂

90%H₂O-N₂

3%H₂O-N₂

Li₂ZrO₃ powder remains unchanged during exposure to higher steam content and at higher temperatures. No significant changes in the particle size and morphology were observed.

Li₂ZrO₃ will be used as the next generation material to extend the matrix lifetime 11

NER Accomplishment 2: Corrosion of Components in Molten Hydroxide

Corrosion test set up

<u>Operation Conditions</u> Materials: SS and nickel sheet (1"x1"); Electrolyte: molten (LiNa)OH Atmosphere: N₂-3% H₂O (100 sccm) Temperature: 550°C; Immersion time: ~50 h

Structural Analysis: 550°C in air for 50 h

- □ Corrosion tests of SS showed surface corrosion products formation.
- □ Ni sample showed NiO phase only after corrosion test of 50 h.

Hot Corrosion Test: 316L SS-in Li/Na Hydroxide

Test Condition: N_2 -3% H_2O at 450 and 550°C for 50 h.

□ Formation of mixed oxide scales (LiFeO₂, LiFe₅O₈) with faceted morphology could be spontaneously produced in Li/NaOH electrolyte due to its negative Gibbs energies.

GINER

- At 550 °C, nickel was oxidized to form NiO phase on the surface and the NiO peaks increase in a higher temperature.
- Lowering temperature to 450 °C can mitigate hot corrosion tremendously
 - No NiO observed from XRD

GINER Hot Corrosion Test: Ni-Metal in Li/Na Hydroxide Accelerated Test Condition: 3%H₂O-Air at 600°C for 50 h.

After oxidation in 3%H₂O-Air

- Extremely porous oxide microstructure appears after 50 hrs in LiNaOH at 600 °C.
- Oxide scale consists of NiO, and appears denser near metal/oxide interface as compared to oxide/air interface.
- □ Varying molten hydroxides can also change the degree of hot corrosion

GINER Accomplishment 3: Single Cell Design and Testing

Button Cell Components

Electrolyte stored in cell compartment (AD)

Electrode (CD)

Advanced Electrolyzer Cell Components

Gold plated-Ni current collector

Advanced Active Cell Components

- Anode: AD-1 (thickness ~200 µm)
- Cathode: CD-1 (thickness ~200 µm)
- Matrix: YSZ (thickness 200-400 µm)
- Electrolyte: molten NaCsOH or variations

Advanced Inactive Cell Components

- Gold plated Ni-current collector
- Aluminized wet-seal area
- Advanced sealing materials

Gold (thin-film)-plated Ni current collector can enhance corrosion resistance

HTAWE Cell Performance at 550°C

AMR 2019

AMR 2018

Met Go/No Go Decision (1st performance period) Point

- Achieve electrolyzer performance of < 1.5 V at a current density of 1.0 A/cm² at temperature of 550 °C;
- ❑ Achieve electrolyzer performance of < 1.4 V at a current density of 0.6 A/cm² at temperature of 550 °C

GINER Constructed Automatic Electrolyzer Test Station

Old Test Station

- Use nitrogen as a carrier gas in order to deliver reactants
- Manually refill the boiler, and regulate steam flow rates and temperatures

New Test Station

- □ No nitrogen as a carrier gas
- Industrial controller to continuously monitor cell conditions
- Automatically refill the boiler, and regulate steam flow rates and temperatures
- Ability to produce up to 1.7kg/h of pure steam at atmospheric pressure

HTAWE Cell Performance and Durability

- Successfully achieved a cell performance of 1.5 V at a current density of 1000 mA/cm² after 120 h.
- Lowering temperature dramatically deteriorates cell performance, due to suppressed kinetics and increased resistance

Improved Performance at Lowered T (450 °C)

NER

□ Cell performance improvement at 450 °C (vs Slide 19) due to

- Low melting-point electrolyte (conductivity barely increased when T> 450 °C)
- Reduced corrosion (corrosion-resulted cell resistance decreased at lower T)

Accomplishment 4: Projected HTAWE Cost

Repeating Components (Active) 36%	H ₂ Production Cost Contribution	HT Alkaline Cost (\$/kg)		PEM Comparison Cost (\$/kg)
59% COSTS 41% - CapEx -	Capital Costs ¹	0.38		1.30
5% Non	Feedstock Costs ²	1.44 (39.3 kWh/kg)		1.96 (50.5 kWh/kg)
Repeating Components (Non-Active)	Fixed O&M	0.75	CSD	0.70
2.5	Variable Costs	0.020	Related	0.020
■V@450C ●V@550C O	Total Hydrogen Production Cost (\$/kg) ³	2.59	Cost 1 Bar \$3.79/kg	3.98
oltage	Delivery (CSD)	2.46	20 Bar \$2 46/kg	2.46
	Total Hydrogen Production Cost (\$/kg)	5.05	40 Bar \$2.24/kg	6.44
100 250 400 550 700 850 1000 Current Density (mA/cm ²)	¹ 20 year lifetime, ² Based on low electrical cost of \$0.039/kWh, cell voltage of 1.4V, ³ Design Capacity: 1500 kg- H-/d. Assumes large scale production			

Economics: determined using H2A cost models

NER

Based on 1 A/cm² Operation. Increasing Active Area & Operating Current Density reduces Capex.

H₂/d. Assumes large scale production.

Energy Balance

HT Alkaline Electrolysis, 1MW Mass & Energy Balance Target: 450°C, 1.50V/cell

* Assumes 90% heat recovery

- Operating cell above Vtn (1.28V) results in excess thermal heat from system (can be used for trim heater)
- Operating below the Vtn can require a significant amount of energy to operate Trim heater

Collaborations

Giner, Inc. -Prime Hui Xu	Industry	Fabrication and optimization of HER and OER catalysts; composite metal oxide development and optimization; cell fabrication, testing & validation.
Giner ELX, Inc. -Subcontractor Monjid Hamdan	Industry	Energy balance, stack and system engineering development.
University of Connecticut -Subcontractor Prabhakar Singh	Academia	Development of the fundamental understandings of the matrix coarsening and corrosion of the components in the molten hydroxide medium.
Zircar Zirconia -Vendor	Industry	Supply of metal oxide powders and matrix

Summary

- Stability of a variety of metal oxides was investigated under simulated HTAWE temperature and reactant conditions
 - YSZ underwent a degree of degradation via the formation a new oxide phase
 - CeO₂ was partially dissolved in molten hydroxides and followed up by re-deposition
 - Li₂ZrO₃ powders demonstrated remarkable stability in molten hydroxides and can be used the next generation material to extend matrix lifetime
- The corrosion of the SS-316 and Ni-materials in molten Li/NaOH melt was conducted under simulated HTAWE conditions
 - Formation of surface oxide scale was observed for both materials while Ni showed less degree of corrosion
 - Lowering temperature and changing electrolyte composition can help to mitigate the component corrosion

HTAWE cell performance continuously improved

- Achieved 1.5V at 1000 mA/cm2 at 550 °C, meeting Go/No Go milestone
- Newly developed components led to stable cell performance up to 120 hours
- Lower temperature (450 °C) operation was realized

□ Preliminary energy balance of 1MW water electrolysis was conduced

- Electrical efficiency can be higher than 90% at 550 °C
- Tremendous cost savings can be realized using HTAWE

Future Plans and Challenges (FY18-19)

Future Plans

Matrix and composite electrolyte optimizations

- □ Synthesize new matrix material (e.g. Li₂ZrO₃-fine powder)
- □ Optimize the Li₂ZrO₃-matrix fabrication process
- □ Optimize electrolyte compositions-e.g. ternary electrolyte inventory
- □ HER and OER catalysts optimizations at 450 °C
 - □ Fabricate thinner electrodes
 - Optimize microstructure design
- □ Reduced electrolyzer cell temperature to 450 °C
 - □ Perform durability test at 450 °C for 300 h
- Components corrosion mitigation
 - Optimize SS-316 or 310 and Ni-based current collector
 - Perform perovskite oxides coating to minimize corrosion at lower T
- Design the stack module
 - □ Cost analysis and system design (Giner-Elx)

Future Challenges

- □ Maintaining the electrolyte in the single/stack cells for long term durability
- □ Maintaining the seals of single/stack cells

Acknowledgments

- Financial support from DOE EERE Fuel Cell Technology Office under award # DE-EE0007644
 - DOE program manager: Dr. David Peterson
 - Giner Personnel
 - Corky Mittelsteadt, Steve McCatty,
 - □ Fuel Cell Energy: Dr. Chao-yi Yuh