

HydroGEN: Low-Temperature Electrolysis

G. Bender, H.N. Dinh

Presenter: Guido Bender, NREL

Date: 4/30/2019

Venue: 2019 DOE Annual Merit Review

Project ID # P148A

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Lawrence Livermore National Laboratory

Advanced Water-Splitting Materials (AWSM) Relevance, Overall Objective, and Impact

AWSM Consortium 6 Core Labs:

<u>Accelerating R&D</u> of innovative materials critical to advanced water splitting technologies for clean, sustainable & low cost H₂ production, including:

Overview - LTE Technology

Anode: 2H₂O => O₂ + 2H⁺ + 2e⁻

Cathode: 2H⁺ + 2e⁻ => H₂

Niche Application Deployment

Cathode: 4H₂O + 4e⁻ => 2H₂ + 4OH⁻

- Low TRL Technology
- **Research Stage**

Overview - LTE Technology Relevance / Impact

PEM

- Gas Crossover
- Membranes
- Catalyst Materials
- Catalyst Loading
- PTL Materials

AEM

- Membranes
- Catalyst
- Ionomer
- Electrolyte feed required?
- BOP Materials

Common Barriers

- Material Integration
- Material Cost
- Understanding Interfaces and Interactions

4

Overview - LTE Technology Relevance / Impact

State-of-Art PEM

- 2V @ 2A/cm²
- 2-3 mg/cm² PGM catalyst loading on anode & cathode
- 60k 80k hours in commercial units
- Niche applications
 - Life support
 - Industrial H₂
 - Power plants for cooling
- \$3.7/kg H₂ production*

State-of-Art AEM

- 2V @ $0.2A/cm^2$ in H₂O
- Improved performance in basic solution
- 2-3 mg/cm² PGM-free catalyst loading on anode & cathode
- ~2k hour at 27°C demonstrated **
- No commercial units
- \$/kg production not available

*High volume projection of hydrogen production for electrolysis:

https://www.energy.gov/sites/prod/files/2017/10/f37/fcto-progress-fact-sheet-august-2017.pdf

** K.Ayers, AMR Presentation PD094, 06/2014

Approach – HydroGEN EMN

Approach – HydroGEN EMN

HydroGEN: Advanced Water Splitting Materials

Accomplishments and Progress: Established Nodes for Project Support

Lawrence Livermore National Laboratory

<u>45 nodes for LTE</u>

- 19x readiness level 1
- 21x readiness level 2
- 5x readiness level 3

21 nodes used by LTE projects

Node Classification 6x Analysis 13x Benchmarking 25x Characterization **14x Computation 7x Material Synthesis** 7x Process and Manufacturing Scale-Up **3x System Integration**

Accomplishments and Progress: 5 HydroGEN LTE Seedling Projects and Others

Collaboration and Coordination - Node Utilization

Lab	Node	Proton	ANL	NEU	LANL1	LANL2	Super	DMREF
NREL	Data Hub							
LLNL	Computational Materials Diagnostics and Optimization of PEC Devices							
NREL	Electr. Structure Modeling of Catalysts						\checkmark	
LLNL	Ab Initio Modeling of Electrochemical Interfaces						\checkmark	
LBNL	DFT and Ab Initio Calculations		\checkmark		\checkmark			
LBNL	Multiscale Modeling of Water-Splitting Devices	\checkmark		\checkmark		\checkmark	√, √	
SNL	LAMMPS			\checkmark				
SNL	Separators for Hydrogen Production				\checkmark	\checkmark		
NREL	Novel Membrane Fabrication and Development for LTE and PEC	\checkmark		\checkmark			\checkmark	\checkmark
NREL	Multi-Comp. Ink Development, High- Throughput Fabrication, & Scaling	\checkmark	\checkmark	\checkmark			\checkmark	
Computation Processing & Scale Up								

HydroGEN: Advanced Water Splitting Materials

Collaboration and Coordination - Node Utilization

Lab	Node	Proton	ANL	NEU	LANL1	LANL2	Super	DMREF
SNL	Advanced Electron Microscopy							
NREL	Catalyst Synthesis, Ex situ Characterization & Standardization	\checkmark					√, ✓	
LBNL	Ionomer Characterization and Understanding	\checkmark				\checkmark	\checkmark	
NREL	In Situ Testing Capabilities	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LBNL	Understanding Inks and Ionomer Disp.						\checkmark	
SNL	Near Ambient Pressure E-XPS				\checkmark			
NREL	Surface Analysis Cluster Tool		\checkmark		\checkmark			
LBNL	Probing and Mitigating Corrosion	\checkmark						
LBNL	PEC In Situ Testing using X-Rays				\checkmark		\checkmark	
LBNL	Water Splitting Device Testing					\checkmark	\checkmark	
SRNL	Fabrication and Characterization of Electro-catalyst and Components for H2 Production						\checkmark	

Characterization

High Efficiency PEM Water Electrolysis

Goals: Develop ultra-efficient PEM electrode per targets below

Metric	State of the Art	Proposed		
Membrane thickness	175 microns	50 microns		
Operating temperature	58 °C	80-90 °C		
Cell Efficiency	53 kWh/kg	43 kWh/kg		

Approach: Look at materials and manufacturing holistically to optimize

Focus of Phase 2

- 1. Understand water management and relationship to catalyst loading and porous transport layer geometry,
- 2. Demonstrate electrochemical stability of Ir-Ru alloy catalysts,
- 3. Quantify migration of platinum group metals after accelerated stress tests.

Accomplishments in Phase 1 2.2 Met voltage targets with 2.1 advanced catalyst and thin 2 membrane. 1.9 Cell Potential (Volts) 1.1 8.1 8.1 1.5 1.4 1.3 1.2 100 0 20 120 140 160 60 Time (Hours)

HydroGEN: Advanced Water Splitting Materials

K. Ayers, P155, 4/30/19 Tue.

7

Nodes

REPKELEY I AL

PGM-free OER Catalysts for PEM Electrolyzer

	Argonne Argonn					
<u>Project</u> Vision:	To lower the capital cost of proton exchange membrane water electrolyzer (PEMWE) by replacing expensive Ir with platinum group metal-free (PGM-free) electro-catalysts.					
Project Impact:	To reduce anode catalyst cost by removing the catalyst pricing and supply bottlenecks for the widespread implementation of PEME for H ₂ production using renewable energy sources.					
Project Approac	Developing metal-organic framework (MOF) based PGM-free oxygen evolution reaction (OER) catalysts with performance approaching to that <u>h:</u> of Ir and demonstrating through operating PEMWE.					

Focus of Phase 2

- **Continue to improve PGM-free OER catalyst** through multi-metallic MOF/ZIF design & synthesis
- Investigate the catalyst-structure relationship and performance improvement through collaboration with HydroGen using advanced characterizations & computational modeling
- **Double PEMWE current density with new PGM**free OER catalysts over the BP1 benchmark
- **Demonstrate PGM-free catalyst stability in** PEMWE through cell voltage cycling test

HydroGEN: Advanced Water Splitting Materials

High-Performance Ultralow-Cost Non-Precious Metal Catalyst System for AEM Electrolyzer

National Laboratories

Project Goal:

The key challenge in anion exchange membrane (AEM) electrolyzer is to achieve high performance without feeding alkaline or salt solutions to the electrodes. In this project, LANL team is developing PGM-free catalysts demonstrating high performance in the pure-water feed AEM water electrolyzer.

Focus of Phase 2

- **Catalyst development:**
 - Composition and particle size control to improve activity and durability
- **Fundamental study:**
 - Understanding the phenomena occurring at the catalyst-ionomer interface using in situ and ex situ AP-**XPS and XAS**
 - Adopting GDE electrochemical cell to explore catalyst-ionomer interaction
- **Optimizing catalyst-ionomer combination** to improve performance and durability of **AEM** water electrolyzer

HydroGEN: Advanced Water Splitting Materials H. Chung, PD158, 4/30/19 Tue. 5

Nodes

BERKELEY LAB

Scalable Elastomeric Membranes for Alkaline Water Electrolysis

ргото

Project
Goal:Preparing durable and economically-affordable alkaline
hydroxide conducting SES materials and demonstrating the
high performance and durability in AEM-based water
electrolysis

Accomplishments in Phase 1
Semi-crystalline SES AEM synthesized by acid catalyzed polymerization without using expensive metal catalyst.

Properties: • IEC = 1.71 mequiv./g

- Water uptake = 144 %
- In-plane swelling = 30%

Rensselaer

Go-No-Go decision properties (Oct. 2018)

Sandia National

Laboratories

Properties	Target	Status
Hydroxide conductivity (mS cm ⁻¹) at 30 °C	40	42 (30 °C) 54 (60 °C) 63 (80 °C)
Alkaline stability after 300 h in 1 M NaOH at 80 °C	< 5 % loss conductivity	0% loss
Mechanical toughness (mechanical strength (MPa) × % elongation) at 50 °C, 90% RH	> 1400	2091

Focus of Phase 2

Planned research on Phase II

- Identify the performance and durabilitylimiting factors of AEM electrolysis.
- Further optimization of AEM and ionomeric binder for best electrolyzer performance and durability.
- AEM electrolyzer testing & verification

Y. Kim, PD159, 4/30/19 Tue.

5

Nodes

Vision:

Developing Novel PGM-Free Catalysts for Alkaline HER & OER

NIVERSITYOF

ELAWARF

Advent

Project

To develop stable, high-conductivity, and high-strength AEMs, stable and active PGM-free catalysts for hydrogen and oxygen evolution reactions.

Accomplishments in Phase 1

Northeastern University Center for Renewable Energy Technology

Membrane development:

Catalyst development:

- HER Electrocatalysts: η of 300 mV at 500 mA/cm2 with PGM-free (Ni-Cup) HER electrocatalysts in an AEM MEA.
- OER Electrocatalysts: η of 150 mV at 500 mA/cm2 with PGM-free Ni-Fe/Raney Ni OER electrocatalysts in an AEM MEA.
- AEM MEA: Demonstrated a PGM-free AEM MEA electrolyzer performance of 0.8 A/cm2 at ≤1.92 V.

- Successfully prepared and characterized single and multication polyaryl piperidinyl triphenyl AEM membranes.
- ASR 0.048 Ω·cm² meets Phase 1 milestone

Sandia

National

• <2% ion-exchange capacity loss at 1000 h in 95C 1M KOH

Focus of Phase 2

- Refine the HER and OER catalysts down selected in Phase 1
- Improve the durability of multiple cation AEM via cross-linking or introduction of reinforcement matrix
- Introduce high performance electrode architectures to facilitate gas evolution from the catalytic layer

HydroGEN: Advanced Water Splitting Materials S. Mukerjee, PD156, 4/30/19 Tue.

6

Nodes

HydroGEN: Advanced Water Splitting Materials

Linking LTE/Hybrid Materials to Electrode Properties to Performance

Supernode - Accomplishments

Savannah River National Renewable Energy Laboratory

Effect of catalyst loading on performance

- Systematic variation of catalyst loading in RDE and MEA experiments
- Increased loading resulted in lower mass-normalized performance due to decreased utilization (surface area)

MEA data – S.M. Alia, B. Rasimick, C. Ngo, K.C. Neyerlin, S.S. Kocha, S. Pylypenko, B.S. Pivovar, *J. Electrochem. Soc.*, **2016**, *163*(11), F3105-F3112. DOI:10.1149/2.0151611jes *RDE data* – S.M. Alia, G.C. Anderson, *J. Electrochem. Soc.*, **2019**, *166*(4), F282-F294. DOI:10.1149/2.0731904jes

HydroGEN: Advanced Water Splitting Materials LTE Supernode MRS Poster, 4/30/19 Tue.

8

Nodes

BERKELEY LAB

Linking LTE/Hybrid Materials to Electrode Properties to Performance

Supernode

- Performance testing of fabrication parameters
- Solvent ratio impacts performance in LTE
- Solvent choice and fabrication method impacts performance of hybrid sulfur cycle system

Proposed Future Work

- 1. Study the impact of coating methods on electrode morphology and PEM electrolysis performance
- 2. Study interaction of thin ionomer film on catalyst to understand its impact on local electrode structure and performance.
- 3. Correlate changes in performance due to processing & materials using modeling.
- 4. Develop pathway to branch studies into AEM technology

HydroGEN: Advanced Water Splitting Materials LTE Supernode MRS Poster, 4/30/19 Tue.

- Collaborated with HydroGEN Benchmarking Project
- Point of contact for leveraging exchange with IEA Annex 30 for in-situ & ex-situ research
- Leadership role in developing path forward for harmonized protocols, hardware, and materials
- Benchmarking working groups and annual meeting
- Disseminated benchmarking information:
 - a) G. Bender, M. Carmo, T. Smolinka, A. Gago, N. Danilovic, M. Mueller, F. Ganci, A. Fallisch, P. Lettenmeier, K. A. Friedrich, K. Ayers, B. Pivovar, J. Mergel, D. Stolten, "Initial Approaches in Benchmarking and Round Robin Testing for Proton Exchange Membrane Water Electrolyzers", International Journal of Hydrogen Energy, submitted August 2018, March 2019 in press
 - b) S.M. Alia, G. Anderson, "Iridium Oxygen Evolution Activity and Durability Baselines in Rotating Disk Electrode Half-Cells", J. Electrochem. Soc., **2019**, 166(4), F282-F294. DOI:10.1149/2.0731904jes
 - c) G. Bender, M. Carmo, S. Fischer, T. Lickert, T. Smolinka, J. Young, "Round Robin Testing for Polymer Electrolyte Membrane Water Electrolysis - Phase 2", World Hydrogen Energy Conference, Rio de Janeiro, June 19, 2018

- HydroGEN LTE is
 - Supporting 5 FOA projects with 21 nodes
 - Supporting 1 NSF project with 3 nodes
 - Leading 2 Supernodes with 14 nodes
- Projects demonstrate improvements in PEM & AEM technologies
- Working closely with the project participants and benchmarking activities to advance knowledge and utilize capabilities

- Continue to enable and support research of Phase 2 Projects through lab nodes and expertise
- Enable new FOA awarded seedling projects (Fall 2019)
- Continue to develop supernodes to help accelerate LTE research
- Work with the 2B team and LTE working group to establish testing protocols and benchmarks
- Utilize data hub for increased communication, collaboration, generalized learnings, and making digital data public

Acknowledgements

Energy Materials Network

U.S. Department of Energy

Lawrence Livermore National Laboratory

Acknowledgements

Û

LTE Supernode Team

Shaun Alia Grace Anderson Guido Bender Huyen Dinh Allen Kang Scott Mauger Bryan Pivovar Michael Ulsh James Young

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Donald Anton Hector Colón-Mercado

Nemanja Danilovic Ahmet Kusoglu Adam Weber

Energy Materials Network

U.S. Department of Energy

Lawrence Livermore National Laboratory

Technical Backup Slides