

Best-in-class Platinum Group Metal-free Catalyst Integrated Tandem Junction PEC Water Splitting Devices

Pls: G. Charles Dismukes & Eric Garfunkel Co-Pl: Martha Greenblatt Presenter: Mr. Shinjae Hwang Rutgers, the State University of New Jersey 4/30/2019

Project ID # p160

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Lawrence Livermore National Laboratory

Partners

Rutgers Pls: E. Garfunkel & G. C. Dismukes, coPI: M. Greenblatt

NREL 4 Nodes (MOVPE, PEC, HTE & HOIPS): T. Deutsch, * this amount does not include cost share or support for HydroGEN D. Friedman, M. Steiner, A. Zakutayev, K. Heinselman, K. DOF)

Zhu, & J. Berry

Vision

Identify the best technical approaches to fabricate both High Performance (HP) & High Value (HV) PGM-free PECs: -Use NREL-proprietary tandem III-V as HP photovoltaic -Use NREL nitrides & Rutgers perovskite oxynitrides in tandem as HV PV

-Use Rutgers-proprietary electro-catalysts for O_2 and H_2 evolution

Impact

- Reveal performance limits of two limiting PV configurations (HP vs. HV) using RU PGM-free Cats.
- Identify & solve catalyst/PV interface problems.

Award #	EE0008083
Start/End Date	09/01/17 - 12/30/20
Yr 1 Funding* Yr 2 Funding*	

resources leveraged by the project (which is provided separately by **Bioinspired Bioinspired**

2

Project Motivation

High-performance Photovoltaics: State of the art material is NREL HP III-V tandems (STH 16.7%) vs. multi-junction silicon (STH 9.5%).

High-value (HV) – emerging photoabsorbers:

SrNbO₂N and NREL-developed, ZnSnN₂, HOIPs all coupled with Si are potential efficient PV for water splitting and low-cost.

TiN vs. TiO_2 – Rutgers developed thin-film diffusion barrier and protection layer.

LiCoO₂ OER eCat – Rutgers developed for alkali w. performance superior over PGM-catalysts.

Ni₅P₄ HER eCat – Rutgers developed for acid & alkali w. performance on par with Pt.

Barriers

PGMs eCats with PGM-free eCats without compromising STH efficiency

→ Develop optically thin-films of R.U. eCats performing on par with thin-film PGM eCats.

Reduce light losses in Cat/Absorber interface (literature:

$5 \text{ nm MoS}_2/MoO_x \sim 25\% \text{ current loss})$

→ choose catalyst + diffusion barrier & optimize thicknesses Photoabsorbers corrode in alkaline electrolyte

→ Develop proper protection layer for alkaline RU eCats.

Key Impact – year 1

Metric	State of the Art	Expected Advance
HP – STH Efficiency	Non-PGM PEC STH ~10%	Yr1: Match or beat using non-PGM Rutgers-eCats.
HV - BiVO₄ benchmark	Yr1: J _{ph} = 1.5mA/cm ² at E – 1.23 V vs. RHE Stable >90% for 1h, material-cost	Yr1: ZnSnN ₂ , Improve two or more metrics.

Partnerships - NREL

III-V Semiconductor Epi-Structure Device Design and Fab MOPVE GaInP/GaAs growth & engineering capabilities **D. Friedman & M. Steiner**

On Sun Characterization of Bulk and Interfaces Solar testing and benchmarking capabilities **T. Deutsch, & J. Young**

High-Throughput Thin-film Combinatorial Capabilities *Multi-source and reactive sputtering capabilities* **A. Zakutayev & K. Heinselman**

Hybrid Organic Inorganic Perovskites for Water Splitting **K. Zhu & J. Berry**

Rutgers thin-film catalyst and protection layer

Demonstrated high catalytic activity (high TOF among non-noble metal HER catalyst) and undiminished performance (>120 h) on a Si photocathode *J. Mat. Chem. A.*, **2019**, **7**, 2400-2411

Inverted methamorphic structure III-V with PtRu catalyst, 16.2% STH, but unstable

Nature Energy 2017, 2, 17028.

Project Goal:

- 10% solar-to-hydrogen efficiency
- > 100 hours stability

HydroGEN: Advanced Water Splitting Materials

BP1 scope: 1st GEN III-V tandem photocathode

- Integration of Ni₅P₄/TiN layer synthesis
- Initial test of half-cell stability
- Evaluate solar-to-hydrogen (STH) efficiency
- Achieve non-PGM activity on par with PGM

Project Goal:

- Reduce PEC device costs enabling lower H₂ price
- ~ 10% STH

HydroGEN: Advanced Water Splitting Materials

Rutgers thin-film catalyst

S. Hwang, et al., ECS Trans. 2016, 72, 31–51.

BP 1 scope: Evaluate ZnSnN₂

- Synthesis on TCO substrate
- Optimize carrier density
 through synthesis conditions
- Test ZnSnN₂ aqueous stability
- Characterize PV
- Evaluate cost metrics for ZnSnN₂

Table 3.1.8 Technical Targets: Photoelectrochemical Hydrogen Production: Photoelectrode System with Solar Concentration ⁸					
Characteristics	Units	2011 Status	2015 Target	2020 Target	Ultimate Target
Solar to Hydrogen (STH) Energy Conversion Ratio ^{e, f}	%	4 to 12%	15	20	25

 This project focuses on two competing device designs that will be compared using techno-economic analysis to demonstrate the route to hydrogen production at <\$2/kg

HydroGEN consortium

The HP device utilizes the EMN node expertise of the MOPVE, PEC, and on-sun nodes to produce a PEC device with high stability. High-stability and efficiency off-sets the photoabsorbers' costs

 The HV devices leverages the NREL high-throughput synthesis node to produce high quality ZnSnN₂ or SrNbO₂N photoelectrodes. BP1 evaluated the TRL of ZnSnN₂ photocathodes. BP2 will evaluate the SrNbO₂N vs HOIPs as low cost photoabsorbers. HOIPs, similar to III/V photoabsorbers, need both protection and catalyst layers for continued operation. SrNbO₂N provides improved stability but must be interfaced with the RU-catalyst.

Accomplishments: High performance device (III-V PEC)

Ni₅P₄ (electrocatalyst) – TiN (protection layer) on III-V semiconductors

- 1. Successful integration of Ni₅P₄ HER catalyst with TiN protection layer on GalnP₂ (Task 2)
- Achieved 10 mA/cm² and over 120h durability by half-cell measurement with np-GalnP₂/p⁺GaAs (Go/No-Go decision point metric)
- Exceeded unassisted solar-driven water splitting target: STH ~ 11.5% (Go/No-Go decision point metric)

- HIM image shows dense polycrystalline catalyst coverage
- TEM/EDS mapping confirms catalyst and protection layer without atomic diffusion of In and Ga

HydroGEN: Advanced Water Splitting Materials

- J-V curve shows ~10 mA/cm² current density which has been confirmed by IPCE measurement (NREL PEC node)
- Durability test demonstrates 120 h stability of Ni₅P₄/TiN/np-GaInP₂ (buried junction)
- Surface Cu-contamination during the measurement decreases photocurrent
- Contamination traced to epoxy failure (slow leaching of Cu-contact through epoxy) HydroGEN: Advanced Water Splitting Materials

Accomplishments: Unassisted Solar-Driven Water Splitting

- Using the published Faradaic efficiency of 100%* yields solar-to-hydrogen (STH) conversion efficiency of 11.5%
- Exceed Go/No-go Decision Point Thrust 1 Criteria: STH> 10%

HydroGEN: Advanced Water Splitting Materials

1766-2016

RUTGERS

Top junction:

- AllnP increases EQE at low wavelengths by decreasing recombination
- TiN interlayer provide improved protection of the acid soluble AlInP window layer

Bottom junction:

• 2nd GEN tandem with quantum well can capture more light above 900 nm

Accomplishments: HV device – ZnSnN₂ photoanode (HTE node)

we will not be pursued in BP2.

Go/no-Go decision point:

- Photocurrent densities of > ?
 1.5mA/cm² (at 1.23 V vs. RHE)
- Stability 90% for 1 h ?
- Improved costs metrics over the BiVO₄ benchmark

Protection layer

pinhole

1766-2016

RUTGERS

Precursors/All material costs

Accomplishments: Perovskites photoabsorbers (new approach)

HTE node:

- Experimentally measured band structure of SrNbO₂N (Rutgers, DOE/NSF-CBET)
- Oxynitrides show superior stability over nitrides and sulfides
- Low temperature synthesis method
 applied

Hwang et al. In preparation

Hybrid Organic Inorganic Perovskites (HOIPs) node:

- World leading group for Hybrid Organic-Inorganic Hybrid perovskites solar cell.
 - $V_{oc} \sim 1.1 \text{ V}, J_{sc}, \sim 21 \text{ mA/cm}^2$

Nature Energy 2, 17038 (2017) 13

1766-2016

ITGERS

Accomplishments: Low temperature synthesis of SrNbO₂N

RTA: Crystallinity starting at around 550°C

SLAC Data: Maintaining perovskite structure w/ lattice shifts across a wide range of Sr/Nb ratios
 det
 mag
 HV
 curr
 WD
 1µm

 TLD
 100000 x 1 300 HV
 0.64 AA 3.2 mm
 NREL-Nova 630 NanoSEM

RUTGERS

Sr/(Sr+Nb) = 0.5, 575 °C, 2 min dwell: Problematic cracking observed

14

Accomplishments: HOIPs device fabrication and tunable bandgap

- Variation of bandgap and p-i-n device performance with tuning Br content
- Further work on n-i-p device structure to increase pairing options with Si
- Further work to improve device performance with bandgap near 1.75 – 1.8 eV

1.55 eV 1.61 eV 1.68 eV 1.73 eV 1.81 eV

ITGERS

Milestones	Planned	Milestone Description (Go/No-Go Decision Criteria)	Milestone Verification Process (What, How, Who, Where)	Status
#1	BP1-Q1	Determine which substrate has the best performance/cost while optimizing the loading of the LiCoO ₂ catalyst	E vs OER < 500mV, stable for 24h, loadings ≥ RDE pellets, Electrochemical test in flooded cells, Rutgers	complete
#2	BP1-Q2	Device test under illumination showing: V _{OC} > 1.85 V, J _{SC} > 10 mA/cm ² , and η_{eff} > 25%	Photoeletrochemical benchmarking, NREL	complete
Go/No-Go Criteria for Thrust 1	BP1-Q4	Evaluation of high performance PEC device with renewable catalysts	STH> 10%, stability > 24h, and/or J _{ph} (at 0 V vs. RHE) > 10mA/cm ² , Photoelectrochemical benchmarking, Rutgers and NREL	complete
#3	BP1-Q3	Fabricate and report optimized ZnSnN ₂ device	Optimize reflector - max reflectivity, Balancing the highest possible carrier mobility with closeness to 1.1eV bandgap, Rutgers	complete
Go/No-go Criteria for Thrust 2	BP1-Q4	LiCoO ₂ /ZnSnN ₂ photoanode fabricated and benchmarked against BiVO ₄	Must outcompete on (at least 2 out of 3): J _{ph} (1.5mA/cm ² at 1.23 V vs. RHE), stability >90% after 1h, and material cost, Rutgers, NREL	*Incomplete

*This class of material was not yielding sufficiently positive results for us to continue so a decision was made with NREL node partners to explore perovskites.

Collaboration: Effectiveness Multiple interactions with HydroGEN nodes

NREL: III-V semiconductor & **NREL: High throughput NREL: Hybrid Organic**experimental thin-film node **Inorganic Perovskites node** semiconductor characterization nodes **Meetings** Date **Presenter Outcomes** w/ Characterization of ZnSnN₂ and optimization of ZnSnN₂ Rutgers 7/17/18 NREL NREL fabrication (Task 9, Milestone 3) Site visit: S. Hwang visited the NREL site and exchanged 7/17/18-NREL N/A samples, test setup knowledge, and aligned sample prep. 7/18/18 NREL procedures. (Task 1, 2, and 4) Rutgers 8/16/18 NREL A decision for ZnSnN₂ and BP2 plan for SrNbO₂N NREL 8/27/18 NREL Rutgers BP2 plan for HP device (Task 5-9, BP2 Go/No-Go) Initiate collaboration for HV 2 device Rutgers 9/13/18 NREL NREL (Task 13, Milestone 8) 10/24/18-N/A **HydroGEN** HydroGEN Workshop at ASU 10/25/18 Device structure of HOIPs half-cell and full cell 2/1/19 NREL Rutgers (Task 15,16, 17, and Milestone 11) Nov 2018 -NREL One-on-one weekly update Rutgers Mar 2019 NREL (S. Hwang – J. Young) (Task 5,6, and Milestone 5) (15 times)

HydroGEN: Advanced Water Splitting Materials

Data sharing and interaction with 2B benchmark team:

Verified data uploaded to HydroGEN site and Datahub. Quarterly reports with input from both RU and nodes shared in HydroGEN site and Datahub, and EMN nodes. This has allowed the continued sharing of progress, samples needed, problems encountered, and verification of experimental test procedures. The continuous sharing of results have been critical to rapid progress on this project. Contributions were made for the 2B benchmark team LTE, and PEC benchmark survey. Sharing the data to the water splitting R&D community is realized through publication as well as open access to the verified raw data in the datahub after the project period. Data shared in publications will be opened for sharing at the time of publication.

HydroGEN community interaction: (Since 2018 AMR)

Post-award	Means of communication	Node/point of Contact(s)	
	Telecon	Todd Deutsch NREL	
	In-person NREL visit	Todd Deutsch, Andriy Zakutayev NREL	
	Telecon for progress report	Andriy Zakutayev NREL	
	In-person (ASU AWSM workshop)	HydroGEN community	
	Telecon for weekly progress meeting	James Young NREL	

High-performance device

- 1st GEN upright tandem photoabsorber stability (no bias) Task 5
- Develop next generation III-V lattice matched tandem devices to improve efficiency – Task 6, 8
- Verify the efficiency by on-sun testing Task 7

High-value (low-cost) device

- Develop p-SrNbO₂N photocathode fabrication via sputtering at the NREL HTE node - Task 12
- Demonstrate half-cell with alternative wide bandgap anodes (Hybrid-Organic Inorganic Perovskites) collaboration with NREL HOIPs node Task 13, 15

HP devices

- Successful fabrication of Ni₅P₄/TiN thin-film on GaInP₂
- Achieve STH ~ 11.5%, and half-cell stability > 120 h

HV devices

- Evaluate the ZnSnN₂ PV properties, material cost, and stability
- Successful fabrication of crystalline SrNbO₂N at relatively low temperature
- A new approach for HV device HOIPs for wide bandgap photoabsorber

Thank you for your attention

RUTGERS 250

Charles Martha

Shinjae Hwang

Garfunkel Dismukes Greenblatt Laur

Laursen

Technical Back-Up Slides

Protection layer development – protecting pin-holes:

Summary: NREL HTE node supplied samples to Rutgers for analysis and further modification. ZnSnN₂ showed rapid dissolution in base <30min. Protection layer development has been undertaken.

Figure 1(a) SEM of 10 nm TiO₂ grown directly on $ZnSnN_2$ by ALD. Figure 1(b) image showing a 10nm TiO₂/ $ZnSnN_2$ in 1M NaOH.

Publications:

S. Hwang, S. H. Porter, A. B. Laursen, H. Yang, M. Li, V. Manichev, K. U. D. Calvinho, V. Amarasinghe, M. Greenblatt, E. Garfunkel and G. C. Dismukes, "Creating stable interfaces between reactive materials: Titanium nitride protects photoabsorber-catalyst interface in water-splitting photocathodes", *J. Mater. Chem. A*, 2019, 7, 2400-2411

Presentations:

- G. C. Dismukes "Bioinspired heterogeneous electrocatalysts for CO2 reduction and
- water splitting: Energy-efficient C-C coupling rivaling enzymes" October 2018 Leiden University, Institute of Chemistry, Leiden, the Netherlands Danish Technical University, Institute of Physics, Copenhagen, DK Aarhus University, iNano, Aarhus, DK
- E. Garfunkel "Photoelectrochemical water splitting to form hydrogen", 2018 Telluride Semiconductor Surface Chemistry Meeting, Telluride CO