





## Protective Catalyst Systems on III-V and Si-based Semiconductors for Efficient, Durable Photoelectrochemical Water Splitting Devices

PI: Thomas Jaramillo<sup>1</sup>, co-PI: James Harris<sup>2</sup>
<sup>1</sup> Dept. of Chemical Engineering, Stanford University
<sup>2</sup> Dept. of Electrical Engineering, Stanford University

## April 30<sup>th</sup>, 2019

2019 DOE Hydrogen and Fuel Cells Annual Merit Review

This presentation does not contain any proprietary, confidential, or otherwise restricted information









Lawrence Livermore National Laboratory



| ø | Overview |
|---|----------|
|---|----------|

| Timeline                                                                                                            |           | Barriers                                                                                                                                |                      |  |  |
|---------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|
| Project Start Date: 10/1/2017                                                                                       |           | Stabilization of unstable III-V surface                                                                                                 | ces in acid          |  |  |
| Project End Date: 09/30/2020                                                                                        |           | Fabrication scheme for high-quality                                                                                                     | y InGaN growth on Si |  |  |
| % Complete: 34%                                                                                                     |           | Collection of on-sun data at the weeks time-scale                                                                                       |                      |  |  |
|                                                                                                                     |           | DOE Targets:Cost of hydrogen production\$2.00/kgSolar to hydrogen efficiency20%Electrode Lifetime2 years                                |                      |  |  |
|                                                                                                                     |           |                                                                                                                                         |                      |  |  |
| Budget                                                                                                              |           | Partners                                                                                                                                |                      |  |  |
| Budget Period 1 Funding*                                                                                            | \$222,556 | Jaramillo Group                                                                                                                         | laver expertise      |  |  |
| Budget Period 1 Funding*                                                                                            | \$494,523 | (characterization, catalysis, protective                                                                                                | ayer expense         |  |  |
| * this amount does not include cost shar<br>or support for HydroGEN resources<br>leveraged by the project (which is | e         | Harris Group<br>Semiconductor expertise, particularly in novel synthesis,<br>processing, and fabrication techniques (InGaN growth)      |                      |  |  |
| provided separately by DOE)                                                                                         |           | <b>NREL</b><br>III-V fabrication (epitaxial growth) expertise, on-sun testing<br>expertise, unassisted water splitting device expertise |                      |  |  |
|                                                                                                                     |           | LBNL<br>In Situ Photoelectrochemical Raman                                                                                              | spectroscopy         |  |  |



**Objective:** To develop unassisted water splitting devices that can achieve > 20% solar-to-hydrogen (STH) efficiency, operate on-sun for at least 2 weeks, and provide a path toward electrodes that cost \$200/m<sup>2</sup> by incorporating earth-abundant protective catalysts and novel epitaxial growth schemes.

| Performance<br>Metric <sup>1</sup>    | Units                                    | DOE<br>2020<br>Target | DOE<br>Ultimate<br>Target |
|---------------------------------------|------------------------------------------|-----------------------|---------------------------|
| Hydrogen Cost                         | \$/kg                                    | 4.00                  | 2.00                      |
| Solar to Hydrogen<br>(STH) efficiency | %                                        | 20                    | 25                        |
| PEC Electrode Cost                    | \$/m <sup>2</sup>                        | 200                   | 100                       |
| Annual Electrode<br>Cost              | \$/metric tons<br>H <sub>2</sub> per day | 510,000               | 135,000                   |
| Electrode Lifetime                    | years                                    | 2                     | 10                        |

1). Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan, 3.1: Hydrogen Production.

3

The Team



## **Relevance- Barriers and Innovation**

#### Barrier: Stabilization of III-V surfaces in acid

- Innovation: Use MoS<sub>2</sub> and other non-precious protective catalysts that are stable in acid, conductive, and active for HER. Developing an understanding of fundamental degradation mechanisms through *in situ* studies and leverage those insights into better protective catalysts
  - Task 1: Translatable, thin-film catalyst and protection layer development
  - Task 3: III-V fabrication and PEC device development for tandem III-V and InGaN/Si
  - Task 4: In-situ stability studies
- EMN Nodes: i) Characterization of Semiconductor Bulk and Interfacial Properties (Todd Deutsch), ii) Corrosion Analysis of Materials (Todd Deutsch), and iii) III-V Semiconductor Epi-structure and Device Design and Fabrication (Daniel Friedman).

#### Barrier: Fabrication scheme for high-quality InGaN growth on Si

- **Innovation:** First demonstration of direct nucleation and growth of highcrystalline-quality InGaN on monocrystalline Si by MOCVD in this field.
  - Task 2: Tandem InGaN/Si fabrication

#### Barrier: Collecting on-sun data at the weeks time-scale

- Innovation: By stabilizing III-V unassisted water splitting devices for 100's of hours, we can test them outside for weeks
  - Task 5: On-sun testing at NREL
- **EMN Nodes:** On-Sun Solar-to-Hydrogen Benchmarking (Todd Deutsch)

*p*-doped In<sub>0.45</sub>Ga<sub>0.55</sub>N (100 nm) Absorber MOCVD doped In<sub>0.45</sub>Ga<sub>0.55</sub>N (500 nm) layer Reactive n++-doped In0.45Ga0.55N (10 nm) sputtering Tunneling p\*\*-doped Si (10 nm) junction p-doped Si (100 nm) n-type Si (111) substrate Absorber (500 µm) laver







| Sche<br>III/V                                                                        | eme 1<br>-III/V                                                                                                                                                                                                                     | Scheme 2<br>III/V-Si                                                             |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| a. Upright Tandem                                                                    | b. IMM/High<br>Efficiency Tandem                                                                                                                                                                                                    |                                                                                  |  |
| GalnP                                                                                | GalnP                                                                                                                                                                                                                               | InGaN                                                                            |  |
| GaAs                                                                                 | GalnAs                                                                                                                                                                                                                              | Si                                                                               |  |
| <ul> <li>Robust fabrication</li> <li>Prior success<br/>protecting in acid</li> </ul> | tion <ul> <li>Higher efficiency</li> <li>Novel semiconductor fabrication</li> <li>Fabrication</li> </ul> <ul> <li>New fabrication approaches</li> <li>Pathway to cheaper fabrication</li> <li>Prior success growing LEDs</li> </ul> |                                                                                  |  |
| <ul> <li>Most direct pathway to</li> </ul>                                           | o high efficiency devices                                                                                                                                                                                                           |                                                                                  |  |
|                                                                                      |                                                                                                                                                                                                                                     |                                                                                  |  |
| End of Proje                                                                         | ect Goal #1                                                                                                                                                                                                                         | End of Project Goal #2                                                           |  |
| On-sun testing of splitting devices for                                              | unassisted water<br>or ≥ 2 weeks.                                                                                                                                                                                                   | Demonstration of an unassisted water splitting device with ≥ 20% STH efficiency. |  |



# **Approach: Milestones ahead**

| Milestone                 | Project Milestones                                                                                                                                                                                                                                              | Completion | Percent<br>Complete | Progress               |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|------------------------|
| 2.0                       | Task 2: Tandem InGaN/Si fabrication                                                                                                                                                                                                                             | Date       | Complete            | INOLES                 |
| 2.4                       | Demonstrate working tandem InGaN/Si solar cell device                                                                                                                                                                                                           | 5/31/19    | 30%                 | Achieved by<br>MOCVD   |
| 2.5                       | Demonstrate a tandem InGaN/Si solar cell with power conversion efficiencies of $> 10\%$                                                                                                                                                                         | 12/31/19   | 10%                 | Achieved by<br>MOCVD   |
| 3.0                       | Task 3: III-V fabrication and PEC device development for tandem III-V and InGaN/S                                                                                                                                                                               | i          |                     |                        |
| 3.2                       | Demonstrate InGaN/Si tandem absorbers that produce hydrogen during light-driven, unassisted water splitting                                                                                                                                                     | 9/30/19    | 0%                  |                        |
| 3.3                       | 3.3.1: Demonstrate InGaN/Si as a photoelectrode for unassisted water splitting with >1% STH 3.3.2: Design and implement improved dual III-V tandem absorbers which achieve STH                                                                                  | 3/31/20    | 0%                  |                        |
| 5.5                       | efficiency >15%                                                                                                                                                                                                                                                 | 5/51/20    | 50%                 | achieved 10%<br>STH    |
| 2.4                       | 3.4.1: Demonstrate unassisted water splitting device with >20% STH efficiency that maintains at least 10% STH efficiency for >100 h.                                                                                                                            | 9/30/20    | 0%                  |                        |
| 3.4                       | 3.4.2: Demonstrate unassisted water splitting using InGaN/Si with >2% initial STH that continues to produce hydrogen after >100 hrs of continuous illumination                                                                                                  |            | 0%                  |                        |
| 4.0                       | Task 4: In-Lab Stability Studies                                                                                                                                                                                                                                |            |                     |                        |
| 4.2                       | Utilize the flow cell for analyzing the degradation mechanisms of the III-V based tandem PEC devices.                                                                                                                                                           | 9/30/20    | 25%                 | flow cell and<br>Raman |
| 5.0                       | Task 5: On-sun testing                                                                                                                                                                                                                                          |            |                     |                        |
| 5.1                       | <ul> <li>5.1.1: Finalize the outdoor PEC cell setup, design and protocols to enable on-sun data collection for &gt;24 hours</li> <li>5.1.12: Collect &gt;10 mL of hydrogen from an unassisted water splitting device in an on-sun testing in one day</li> </ul> | 12/31/19   | 0%                  |                        |
| 5.2                       | Demonstrate photoelectrode that generates hydrogen under diurnal conditions on-sun for greater than or equal to 2 weeks                                                                                                                                         | 9/30/20    | 0%                  |                        |
| End of<br>Project<br>Goal | On-sun testing of Scheme 1 and 2 unassisted water splitting devices for longer than 2 weeks.<br>Demonstration of an unassisted water splitting device with an average greater than 20% STH efficiency.                                                          | 9/30/20    | 0%                  |                        |



| <ul> <li>NRI</li> <li>NRI</li> <li>Too</li> </ul> | <ul> <li>EL: Characterization of Semiconductor Bulk and rfacial Properties, <i>Todd Deutsch</i></li> <li>EL: Corrosion Analysis of Materials, <i>Judith Vidal,</i></li> <li><i>Id Deutsch, James Young</i></li> <li>Pre- and post- characterization and failure analysis of photocathodes and unassisted water splitting devices</li> </ul> | Worked with to analyze our<br>photoelectrodes before and<br>after testing to determine<br>failure mechanisms and<br>strategies for improvement. |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| NRI<br>Des                                        | EL: III-V Semiconductor Epi-structure and Device<br>sign and Fabrication, <i>Daniel Friedman</i><br>Design and fabrication of III-V materials and systems                                                                                                                                                                                   | Worked with to fabricate<br>high-quality absorbers<br>compatible with our<br>catalytic protection layers.                                       |
| ► NRI<br>Deu                                      | EL: On-Sun Solar-to-Hydrogen Benchmarking, <b>Todd</b><br>Itsch<br>Testing station for collection of on-sun data for<br>unassisted water splitting devices                                                                                                                                                                                  | Worked with to design our<br>electrodes to be<br>compatible with NREL's on-<br>sun testing setup.                                               |



# **Accomplishments: Phase 1 Milestones**

| Milestone | Project Milestones                                                                                                                                                                                                                                                                                                 | Completion<br>Date | Percent<br>Complete | Progress<br>Notes                       |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-----------------------------------------|
| 1.0       | Task 1: Translatable, thin-film catalyst and protection layer development                                                                                                                                                                                                                                          |                    |                     |                                         |
| 1.1       | Demonstrate >100 h stability for a III-V photocathode which utilizes a non-precious metal HER catalyst                                                                                                                                                                                                             | 3/31/18            | 100%                | Achieved 110<br>hr                      |
| 1.2       | Demonstrate >100 h stability of OER catalysts in conjunction with a III-V based PEC device                                                                                                                                                                                                                         | 9/30/18            | 100%                | Achieved<br>>100 hr                     |
| 2.0       | Task 2: Tandem InGaN/Si fabrication                                                                                                                                                                                                                                                                                |                    |                     |                                         |
| 2.1       | Demonstrate high-crystalline-quality n++- $In_{0.45}Ga_{0.55}N$ growth on Si (111) substrates by sputter deposition, with n-type doping > $10^{20}$ cm <sup>-3</sup> and root-mean-square surface roughness < 0.5 nm.                                                                                              | 12/31/17           | 100%                | Achieved by<br>MOCVD                    |
| 2.2       | Demonstrate high-quality undoped $In_{0.45}Ga_{0.55}N$ and p-doped $In_{0.45}Ga_{0.55}N$ by MOCVD, grown on n++-doped $In_{0.45}Ga_{0.55}N$ sputter-deposited template layers, with properties similar to those measured for the sputter deposited films (see milestone 2.1)                                       | 6/30/18            | 100%                | Achieved by<br>MOCVD                    |
| 2.3       | Demonstrate repeatable Si p-n junctions with the desired hole concentrations and doping profiles.                                                                                                                                                                                                                  | 9/30/18            | 100%                | Achieved by<br>epitaxy and<br>MOCVD     |
| 4.0       | Task 4: In-Lab Stability Studies                                                                                                                                                                                                                                                                                   |                    |                     |                                         |
| 4.1       | Demonstrate effectiveness of the <i>operando</i> microscopy and spectroscopy flow cell measurement technique on a benchmark photoelectrode system such as previously developed $MoS_2/III-V$ photocathodes.                                                                                                        | 12/31/2018         | 85%                 | Achieved with<br>flow cell and<br>Raman |
| Go/No-Go  | <ul> <li>The following two criteria will be met:</li> <li>1) Demonstrate a PEC photoelectrode that achieves &gt;10 mA/cm<sup>2</sup> under 1 sun illumination for longer than 100 h.</li> <li>2) Fabricate an unassisted PEC water splitting device with a non-precious metal HER established a simple.</li> </ul> | 12/31/2018         | 100%                | #1: Achieved                            |
|           | pathway for achieving 20% STH efficiency through integration strategies of the materials<br>and interfaces under investigation.                                                                                                                                                                                    |                    |                     | #2: Achieved                            |

HydroGEN: Advanced Water Splitting Materials



## **Accomplishments for Task 1: Protective Catalysts**

| Milestone # | Project Milestones                                                                         |         | oletion Date<br>Quarter) | Progress            | Progress              |
|-------------|--------------------------------------------------------------------------------------------|---------|--------------------------|---------------------|-----------------------|
|             |                                                                                            |         | Percent<br>Complete      | Notes               | Increase<br>FY18-FY19 |
| 1.2         | Demonstrate >100 h stability of OER catalysts in conjunction with a III-V based PEC device | 9/30/18 | 100%                     | Achieved<br>>100 hr | 50%                   |



Chronopotentiometry of an Ir catalyst with an applied current of 4.2 mA in 0.5 M  $H_2SO_4$ . Left: Current vs time. Right: Potential vs Time.

• We demonstrated stable OER catalysis with time scales commensurate with PEC measurements.



## **Accomplishments for Task 1: Protective Catalysts**

| Milestone # | Project Milestones                                                                         |         | Task Completion Date<br>(Project Quarter) |                  | Progress              |
|-------------|--------------------------------------------------------------------------------------------|---------|-------------------------------------------|------------------|-----------------------|
|             |                                                                                            |         | Percent<br>Complete                       | Notes            | Increase<br>FY18-FY19 |
| 1.2         | Demonstrate >100 h stability of OER catalysts in conjunction with a III-V based PEC device | 9/30/18 | 100%                                      | Achieved >100 hr | 50%                   |



Structure and Morphology of  $IrO_{x}$  (a-c) and  $SrCl_{2}{:}IrO_{x}$  (d-f) Catalysts.

Anode chronopotentiometry for electrodes with geometric areas of 3.3  $\mbox{cm}^2$ 

• The thin-film catalysts we have developed using straightforward wet chemical processes can potentially be used either as counter electrode material or as a protective catalyst layer for photoanodes.



## **Accomplishments for Task 2: InGaN/Si Fabrication**

|             | Project Milestones                                                                                                                                                                                                                                                           |         | etion Date<br>Juarter) Progress |                                              | Progress              |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|----------------------------------------------|-----------------------|
| Milestone # |                                                                                                                                                                                                                                                                              |         | Percent<br>Complete             | Notes                                        | Increase<br>FY18-FY19 |
| 2.2         | Demonstrate high-quality undoped $In_{0.45}Ga_{0.55}N$ and p-doped $In_{0.45}Ga_{0.55}N$ by MOCVD, grown on n++-doped $In_{0.45}Ga_{0.55}N$ sputter-deposited template layers, with properties similar to those measured for the sputter deposited films (see milestone 2.1) | 6/30/18 | 100%                            | Achieved by<br>MOCVD                         | 50%                   |
| (a)         | (b) (a) 10 <sup>6</sup> (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c                                                                                                                                                                                                       |         | (b)<br>10 <sup>22</sup>         | Calculated using RSI<br>Calibrated to 1.2% M | of 2<br>g G aN sample |

Counts (a.u.)

10

10

10



(a) Mg-doped InGaN film grown at 750  $^\circ\,$  C on Si

(b) InGaN solar cell device stack grown using a 2-step process with undoped InGaN grown at 550° C, followed by Mg-doped InGaN grown at 750° C. Particles above film in (b) are likely excess Mg-containing materials, which are removed via HCl etch.

(a) Raw data for secondary ion mass spectrometry (SIMS) depth profile for InGaN solar cell device stack

800

Mg atomic concentration

 $10^{1}$ 

 $10^{18}$ 

Si Ga

Sputter time (sec.)

(b) calculated Mg atomic concentrations from the SIMS depth profile in (a).

• We have been able to fabricate high quality InGaN structures on Si with sufficient Mg doping needed for p-type behavior.

• Work is in progress to achieve rectifying behavior.

800

Sputter time (sec.)

## Accomplishments for Task 2: InGaN/Si Fabrication

| Milestone # |                                                                                                   |                     | Task Completion Date<br>(Project Quarter) |                                     | Progress              |
|-------------|---------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------|-------------------------------------|-----------------------|
|             | Project Milestones                                                                                | Original<br>Planned | Percent<br>Complete                       | Notes                               | Increase<br>FY18-FY19 |
| 2.3         | Demonstrate repeatable Si p-n junctions with the desired hole concentrations and doping profiles. | 9/30/18             | 100%                                      | Achieved by<br>epitaxy and<br>MOCVD | 90%                   |



- We have successfully fabricated a working Si/InGaN device that is compatible with future InGaN fabrication developments. This reflects a high quality Si/InGaN interface.
- In this device the intrinsic InGaN layer is unlikely to be contributing photogenerated charge carriers. Future work on p-InGaN growth will allow for higher performance devices.

# ø

## **Accomplishments for Task 4: In-Lab Stability Studies**

| Milestone # | Project Milestones                                                                                                                                                                                          | Task Completion Date<br>(Project Quarter) |                     | Drogross                                   | Progress              |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|--------------------------------------------|-----------------------|
|             |                                                                                                                                                                                                             | Original<br>Planned                       | Percent<br>Complete | Notes                                      | Increase<br>FY18-FY19 |
| 4.1         | Demonstrate effectiveness of the <i>operando</i> microscopy and spectroscopy flow cell measurement technique on a benchmark photoelectrode system such as previously developed $MoS_2/III-V$ photocathodes. | 12/31/2018                                | 85%                 | Achieved<br>with flow<br>cell and<br>Raman | 85%                   |



Schematic of flow cell for operando optical and Raman microscopy

• We have developed a functional flow cell capable of electrochemical measurements designed for *operando* microscopy and spectroscopy.



Linear sweep voltammogram of an  $MoS_2$  protected GaInP photocathode tested in the flow cell and a typical electrochemical H-cell

#### Nodes Utilized: Corrosion Analysis of Materials On-Sun Solar to Hydrogen Benchmarking

#### HydroGEN: Advanced Water Splitting Materials

14



## **Accomplishments for Go/No-Go**

| Milestone # |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Task Completion Date |                     | Progress<br>Notes            | Progress<br>Increase<br>FY18-FY19 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|------------------------------|-----------------------------------|
|             | Project Milestones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | Percent<br>Complete |                              |                                   |
| 1.1         | Demonstrate >100 h stability for a III-V photocathode which utilizes a non-precious metal HER catalyst                                                                                                                                                                                                                                                                                                                                                                                                                 | 3/31/18              | 100%                | Achieved<br>110 hr           | 10%                               |
| Go/No-Go    | <ul> <li>The following two criteria will be met:</li> <li>1) Demonstrate a PEC photoelectrode that achieves &gt;10 mA/cm<sup>2</sup> under 1 sun illumination for longer than 100 h.</li> <li>2) Fabricate an unassisted PEC water splitting device with a non-precious metal HER catalyst that achieves STH efficiencies &gt; 5% under 1 sun illumination to provide a viable pathway for achieving 20% STH efficiency through integration strategies of the materials and interfaces under investigation.</li> </ul> | 12/31/2018           | 100%                | #1: Achieved<br>#2: Achieved | 10%                               |

Go/No-Go #1 met with pn<sup>+</sup>-GalnP/MoS<sub>2</sub> photocathodes.



Performance of the pn<sup>+</sup>-GalnP<sub>2</sub>/PtRu and pn<sup>+</sup>-GalnP<sub>2</sub>/MoS<sub>2</sub> photocathodes in 3 M sulfuric acid. a) LSV collected prior to stability testing b) CA measurement taken at a constant potential of 0.334 V vs RHE.

## Go/No-Go #2 met with GaAs/GaInAsP/MoS<sub>2</sub> unassisted water splitting tandems.



Electrochemical characterization of GalnAs/GalnP<sub>2</sub>/wl(window layer)/MoS<sub>2</sub>, GaAs/GalnAsP/MoS<sub>2</sub>, and GaAs/GalnAsP/PtRu unassisted water splitting devices in 0.5 M sulfuric acid.

#### Nodes Utilized:

Characterization of Semiconductor Bulk and Interfacial Properties III-V Semiconductor Epi-structure and Device Design and Fabrication Corrosion Analysis of Materials, On-Sun Solar to Hydrogen Benchmarking

## Accomplishments and Progress: Unassisted water-splitting systems



## Accomplishments and Progress: Responses to Previous Year Reviewers' Comments

| Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "Several of the project milestones contain qualitative statements or<br>components. For example, Milestone 1.1 states, "Demonstrate >100<br>h stability," but "stability" is not defined as less than some absolute or<br>less than some relative change from the starting point."                                                                                                                                                                            | We have made Phase 2 milestones more specific to define what stability and performance metrics must be met. For instance, milestone 3.4.1 states:<br>"Demonstrate unassisted water splitting device with >20% STH efficiency that maintains at least 10% STH efficiency for >100h."                                                                                                                                                                                           |
| "This project seeks to use a (roughly) seven-layer device to effect the desired water-splitting reaction. It benefits from the use of established solar-cell manufacturing technologies. However, the complexity of the construct will ultimately limit the amount of cost reduction."                                                                                                                                                                        | While the III-V/III-V device stack does have several layers, this project provides a pathway for lower cost. For instance, InGaN grown by MOCVD offers large cost savings over the usual MBE growth, and the use of Si as the substrate is a substantial cost-reducing element. In addition, we leverage technologies that have already been scaled up in the photovoltaic and LED industries, while our catalysts are earth-abundant and do not contribute significant cost. |
| "Significant advances are required to achieve the project's goal of 20% STH efficiency, and a clear pathway to this was not presented. Also, parasitic absorption losses in the $MoS_2$ may need to be investigated in further detail to avoid light losses in this layer."                                                                                                                                                                                   | 20% STH efficiency is indeed an ambitious goal, we believe that can be achieved with IMM tandems which allow for more ideal band gap combinations. The InGaN/Si platform also offers a route to high efficiencies, though that system requires more R&D to achieve similar performance to that of established III-V/III-V tandems. As we optimize MoS <sub>2</sub> coatings onto these systems, we will focus more attention on improving parasitic light absorption.         |
| "The work exploring corrosion mechanisms of failure is poorly<br>articulated and should receive intense scrutiny. The mechanism of<br>failure is likely a compounded action of chemical and physical<br>phenomena that may not be easily de-convoluted."                                                                                                                                                                                                      | Indeed understanding mechanisms of corrosion is a monumental challenge in many areas, including PEC. For this reason in Phase 2 of this project we will be employing operando spectroscopy and microscopy measurements at the LBNL EMN node to study degradation mechanisms in greater detail.                                                                                                                                                                                |
| "This project needs a strong chemist if the transition metal chemistry<br>is to be fully leveraged. Also, discussion with the PI indicated that an<br>engineer could probably add value in devising how this technology<br>could operate in the field."                                                                                                                                                                                                       | We will leverage chemistry expertise across the project team and EMN node network. The planned 2-week on-sun experiments will inform field operation.                                                                                                                                                                                                                                                                                                                         |
| "The approach is strong, with high levels of collaboration and<br>coordination with EMN nodes." "This project has a very competent<br>chemical engineer as the principal investigator (PI). All project<br>participants are well accomplished as individuals and in teams. The<br>idea of using a transition metal to simultaneously protect the surface<br>and to affect the desired chemical reaction stands to open a rich<br>fertile field of catalysis." |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



## **Collaboration and Coordination: EMN Nodes**

## Phase 1

- NREL: Characterization of Semiconductor Bulk and Interfacial Properties
  - Todd Deutsch
- NREL: Corrosion Analysis of Materials,
  - Judith Vidal, Todd Deutsch
- NREL: III-V Semiconductor Epi-structure and Device Design and Fabrication
  - Daniel Friedman
- NREL: On-Sun Solar-to-Hydrogen Benchmarking
  - Todd Deutsch

Any proposed future work is subject to change based on funding levels



 NREL: Characterization of Semiconductor Bulk and Interfacial Properties

Phase 2

- Todd Deutsch
- NREL: Corrosion Analysis of Materials,
  - Judith Vidal, Todd Deutsch
- NREL: III-V Semiconductor Epi-structure and Device Design and Fabrication
  - Daniel Friedman
- NREL: On-Sun Solar-to-Hydrogen Benchmarking
  - Todd Deutsch
- LBNL: Photophysical Characterization of Photoelectrochemical Materials and Assemblies
  - Jason Cooper



#### EMN Collaboration

- Weekly meetings between Stanford (Reuben Britto) and NREL (James Young, Rachel Mow, Myles Steiner, Todd Deutsch) in the form of videochats
- Weekly exchange of samples fabricated at NREL and further processed at Stanford
- Parallel photoelectrochemical testing and characterization of samples at Stanford and NREL to ensure accuracy and accelerate research progress

### Positive interactions with the broad HydroGEN community

- Kickoff meeting in November 2017 at NREL provided an opportunity to engage with the community, learn about the plethora of available tools, methods, and expertise.
- PEC community meeting at ECS in Seattle in May 2018 to discuss HydroGEN, benchmarking, and related activities.
- HydroGEN EMN Advanced Water Splitting Technology Pathways Benchmarking & Protocols Workshop, Tempe, AZ in October 2018.
- Presentation to Hydrogen Production Tech Team (HPTT) in February 2019.
- Incorporating project data onto the HydroGEN data hub
  - We learned how to use the H2awsm tools at the kickoff meeting to upload our data for the broader community.
  - All of our photocathode stability data and linear sweep voltammetry data will be uploaded.
  - We hope this will help accelerate the stability benchmarking effort.

## **Remaining Challenges and Barriers**

#### Barrier: Mechanistic understanding to stabilize III-V surfaces in acid

- Innovation: Use MoS<sub>2</sub> and other non-precious protective catalysts that are stable in acid, conductive, and active for HER. Developing an understanding of fundamental degradation mechanisms through *in situ* studies and leverage those insights into better protective catalysts
  - **Task 1:** Translatable, thin-film catalyst and protection layer development
  - Task 3: III-V fab and PEC device development for tandem III-V and InGaN/Si
  - Task 4: In-situ stability studies
- EMN Nodes: i) Characterization of Semiconductor Bulk and Interfacial Properties (Todd Deutsch), ii) Corrosion Analysis of Materials (Todd Deutsch), and iii) III-V Semiconductor Epi-structure and Device Design and Fabrication (Daniel Friedman), and iv) Photophysical Characterization of Photoelectrochemical Materials and Assemblies

### Barrier: Fabrication scheme for high-quality InGaN growth on Si

- Innovation: We will continue to modify InGaN on Si growth conditions to achieve p doping to form a homojunction and yield rectifying behavior.
  - Task 2: Tandem InGaN/Si fabrication

### • Barrier: Collecting on-sun data at the weeks time-scale

- Innovation: By stabilizing III-V unassisted water splitting devices for splitting devices for splitting to the stabilizing for weeks at a time.
  - Task 5: On-sun testing at NREL
- EMN Nodes: On-Sun Solar-to-Hydrogen Benchmarking (Todd Deutsch)

Any proposed future work is subject to change based on funding levels









## **Proposed Future Work**

| Scheme 1<br>III/V-III/V                                                              |                                                                                | Scheme 2<br>III/V-Si                                                                                                       |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| a. Upright Tandem                                                                    | b. IMM/High<br>Efficiency Tandem                                               |                                                                                                                            |  |  |  |  |
| GalnP                                                                                | GalnP                                                                          | InGaN                                                                                                                      |  |  |  |  |
| GaAs                                                                                 | GalnAs                                                                         | Si                                                                                                                         |  |  |  |  |
| <ul> <li>Robust fabrication</li> <li>Prior success<br/>protecting in acid</li> </ul> | <ul> <li>Higher efficiency</li> <li>Novel semiconductor fabrication</li> </ul> | <ul> <li>New fabrication approaches</li> <li>Pathway to cheaper fabrication</li> <li>Prior success growing LEDs</li> </ul> |  |  |  |  |
| Most direct pathway t                                                                | o high efficiency devices                                                      |                                                                                                                            |  |  |  |  |
|                                                                                      |                                                                                |                                                                                                                            |  |  |  |  |
| End of Proj                                                                          | ect Goal #1                                                                    | End of Project Goal #2                                                                                                     |  |  |  |  |
| On-sun testing of splitting devices for                                              | unassisted water<br>or ≥ 2 weeks.                                              | Demonstration of an unassisted water<br>splitting device with ≥ 20% STH efficiency.                                        |  |  |  |  |
| HydroGEN: Advanced Water Splitting                                                   | Any proposed future work is subject<br>to change based on funding levels 21    |                                                                                                                            |  |  |  |  |







#### Task 1 – Protective Catalysts

MoS<sub>2</sub> protected pn<sup>+</sup> GaInP<sub>2</sub> for 110 hrs in 0.5M sulfuric acid.

### Task 2 – High Quality InGaN on Si

 Direct nucleation of high-crystalline-quality undoped and p-doped In<sub>x</sub>Ga<sub>1-x</sub>N on Si (111) substrates using MOCVD

### Task 3 – Stable Unassisted Water Splitting

 Greater than 5% STH unassisted water splitting for ~12 hours with a III-V/III-V PEC device using MoS<sub>2</sub> in lieu of any precious metal HER catalysts

### Task 4 – In-situ Stability Studies

 Successful in-situ LSV data collected of a GaInP photocathode





# **Technical Back-Up Slides**

# ø

## **Accomplishments for Task 1: Protective Catalysis**

| Milestone # | Project Milestones                                                                                     |  | Task Completion Date<br>(Project Quarter) |                    | FV18     |
|-------------|--------------------------------------------------------------------------------------------------------|--|-------------------------------------------|--------------------|----------|
|             |                                                                                                        |  | Percent<br>Complete                       | Notes              | Progress |
| 1.1         | Demonstrate >100 h stability for a III-V photocathode which utilizes a non-precious metal HER catalyst |  | 100%                                      | Achieved<br>110 hr | 100 hr   |



Electrochemical chronoamperometric characterization of pn<sup>+</sup>-GalnP<sub>2</sub>/MoS<sub>2</sub> photocathodes in 0.5 M sulfuric acid under 1 sun illumination. Chronoamperometry measurement taken at a constant potential of +0.1 V vs NHE.

- We have demonstrated >100 hr stability.
- These results also meet the criteria of Go/No-Go #1.

#### **Nodes Utilized:**

Characterization of Semiconductor Bulk and Interfacial Properties III-V Semiconductor Epi-structure and Device Design and Fabrication Corrosion Analysis of Materials

HydroGEN: Advanced Water Splitting Materials



## **Accomplishments for Task 2: InGaN/Si Fabrication**

| Milestone # |                                                                                                                                                                                                                             | Task Completion Date<br>(Project Quarter) |                     | Progress<br>Notes    | FY18<br>Progress |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|----------------------|------------------|
|             | Project Milestones                                                                                                                                                                                                          |                                           | Percent<br>Complete |                      |                  |
| 2.1         | Demonstrate high-crystalline-quality n++- $In_{0.45}Ga_{0.55}N$ growth on Si (111) substrates<br>by sputter deposition, with n-type doping > $10^{20}$ cm <sup>-3</sup> and root-mean-square surface<br>roughness < 0.5 nm. | 12/31/17                                  | 100%                | Achieved by<br>MOCVD | 100%             |



(a) XRD symmetric (2theta-omega) scans of the (002) reflection for MOCVD-grown InGaN films with varying indium compositions

(b) XRD phi scans of the InGaN (101) reflection for a typical MOCVD-grown InGaN film.

(a) Plan-view Scanning Electron Microscopy (SEM) image of  $In_{0.24}Ga_{0.76}N$  film

(b) Cross-section SEM image of the same  $In_{0.24}Ga_{0.76}N$  film.

We have developed first growth of crystalline InGaN on Si by MOCVD.





# Path to *in-situ* and *operando* studies on photocathodes

| Milestone #         | Proj                                                                     | ect Milestones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Туре                    | Task Compl<br>(Project C | letion Date<br>Quarter) |
|---------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|-------------------------|
|                     |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Date                     | Month                   |
| 4.2                 | Utilize the flow cell for analyzing the deg PEC devices.                 | gradation mechanisms of the III-V based tandem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Milestone               | 9/30/20                  | M36                     |
| 633<br>Las          | Mirror Spectrograph<br>/ CCD<br>Plasma<br>filter<br>nm<br>er Edge filter | 1500<br>1450<br>1400<br>1350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t                       |                          |                         |
| Cor<br>elec         | Objective covered<br>with teflon film<br>inter<br>trode                  | ce 1200<br>le 1150<br>Sulfidized at:<br>350 C<br>450 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y W                     |                          |                         |
|                     | Au working<br>electrode<br>cell with<br>electrolyt                       | e The fill of the second secon | ) 400<br>man Shift cm-1 | 450                      |                         |
| In-situ Raman setup |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | active in ex             |                         |

• Aiming to incorporate the Photophysical Characterization of Photoelectrochemical Materials and Assemblies node at LBNL for *in situ* Raman studies during Phase 2

situ, and suitable for in situ and operando studies in the future

• Use the *in situ* studies to determine testing protocols for *operando* testing with the flow cell

#### HydroGEN: Advanced Water Splitting Materials



## Path to Stable On-Sun Testing

| Milestone # | Project Milestones                                                                                                                                                                                                                                              | Туре                   | Task Completion Date<br>(Project Quarter) |       |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------|-------|
|             |                                                                                                                                                                                                                                                                 |                        | Date                                      | Month |
| 5.1         | <ul> <li>5.1.1: Finalize the outdoor PEC cell setup, design and protocols to enable on-sun data collection for &gt;24 hours</li> <li>5.1.12: Collect &gt;10 mL of hydrogen from an unassisted water splitting device in an on-sun testing in one day</li> </ul> | Milestone              | 12/31/19                                  | M27   |
| 5.2         | Demonstrate photoelectrode that generates hydrogen under diurnal conditions on-sun for greater than or equal to 2 weeks                                                                                                                                         | Milestone              | 9/30/20                                   | M36   |
|             | On-sun testing of Scheme 1 and 2 unassisted water splitting devices for longer than 2 weeks. Demonstration of an unassisted water splitting device with an average greater than 20% STH efficiency.                                                             | End of<br>Project Goal | 9/30/20                                   | M36   |

- Continue working On-Sun Solar-to-Hydrogen Benchmarking node to adapt our electrodes to NREL's rooftop solar tracking PEC testing apparatus
- Improve device stability to 100's of hour to enable testing outside for >2 weeks

