

Transformative Materials for High-Efficiency Thermochemical Production of Solar Fuels

Chris Wolverton Northwestern University April 29, 2019

Project ID 167 DE-EE0008089

This presentation does not contain any proprietary, confidential, or otherwise restricted information

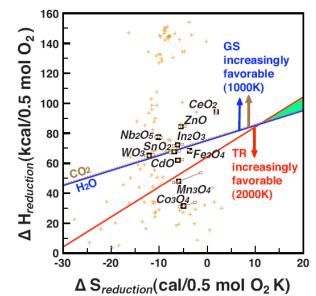
Lawrence Livermore National Laboratory

Project Overview

Project Partners

Chris Wolverton, Northwestern University Sossina Haile, Northwestern University

Project Vision


Combine high-throughput computation and experiment to discovery and design novel, improved STCH materials.

Project Impact

Will explore enormous combinatorial space of materials, to "tune in" desired STCH enthalpy and entropy of reduction. We will design materials with reduced temperatures of reduction but sufficient gas-splitting rates.

Award #	EE0008089
Start/End Date	04/01/2019 - 03/31/2020
Year 1 Funding* Year 2 Funding*	\$250K \$375K

* this amount does not include cost share or support for HydroGEN resources leveraged by the project (which is provided separately by DOE)

Project Motivation

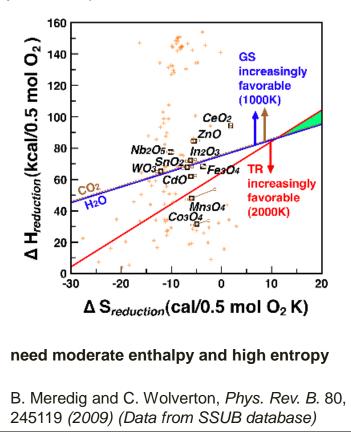
Project builds on background of PIs in STCH materials, attempt to combine high-throughput computational and experimental exploration of oxygen offstoichiometric oxides and phase change materials for enhancing the efficiency of STC production of solar fuels.

Barriers

Risk mitigated by exploring large space of novel STCH materials, and the combined use of high-throughput calculations and experimental efforts to explore this space. Focus to date is on perovskite and doubleperovskite oxide materials.

Key Impact

Identify compounds which show: a) synthesizeability, b) thermodynamics favorable for <1400°C reduction and c) thermodynamics favorable for facile water splitting. State-of-the-art currently CeO_2 and SLMA perovskite.


Partnerships

Productive collaborations with three HydroGEN nodes and other seedling projects: Ginley (NREL) – in-situ XRD and synthesis, Zakutayev (NREL) – thinfilm composition gradient synthesis, McDaniel/Coker (SNL) high-T XRD, O'Hayre (CSM) – (Sr,Ce)2MnO4 layered perovskite

A Design Map for Materials:

Thermodynamics very challenging for <u>stoichiometric</u> reactions (at moderate pressure)

Perovskites (ABO₃ or AA'BB'O₆)

- Until recently : ceria (CeO₂) ^[1]
- ✓ More recently: perovskites ^[2]
- ✓ Perovskites have several good qualities for TWS
 - Tolerate large oxygen off-stoichiometry
 - High Stability
 - Studied for other applications (e.g. SOFC)
 - Enormous compositional space
- High-Throughput Density Functional Theory,
 The Open Quantum Materials Database (OQMD)
- High-Throughput screening of ~11,000 ABO₃ perovskites based on stability and reduction enthalpy

[1] W.C. Chueh, et. al, Science 330 (2010)[2] A.H. McDaniel, et.al, Energy & Environmental Science 6, 2424 (2013)

[3] S. Kirklin, et. al, npj Computational Materials 1, 15010 (2015)

Summary of Year-1 Scope of Work

- (a) Experimentally measure the reduction enthalpy and entropy of twelve predicted simple perovskites
- (b) Validate high-throughput methodology for measuring thermodynamic property using thin film through electrochemical impedance
- (c) Initiate high-throughput computational search for promising doubleperovskite compounds

This project relies heavily on the computational predictions, the correct ranking of computed vacancy formation energy relative to experimental reduction enthalpy of the nine perovskites will be validated. The obtained reduction entropy will be used to establish models to predict compounds based on reduction entropy.

- This project aims to identify promising compounds which show:
 - a) ground state stability/synthesizeability of compound,
 - b) thermodynamics favorable for <1400C reduction and
 - c) thermodynamics favorable for facile water splitting. State-of-the-art currently CeO₂ and SLMA perovskite.
- Discovery of new, higher-efficiency materials is critical towards the practical use of STCH for H₂ production (and solar fuels, more generally). *Our combined high-throughput computation* + experimental approach is greatly accelerating this materials discovery effort.
- Collaborations with HydroGEN nodes (NREL, SNL) and other Seedling projects (CSM) will greatly facilitate research progress

Accomplishments – Synthesis and Reduction of Oxide Materials

Objective

Experimental measurements of redox thermodynamics of computationally predicted perovskites by TGA

Aims:

- (i) Validate the enthalpy calculation
- (ii) Obtain high-quality entropy data to guide/validate future entropy calculations

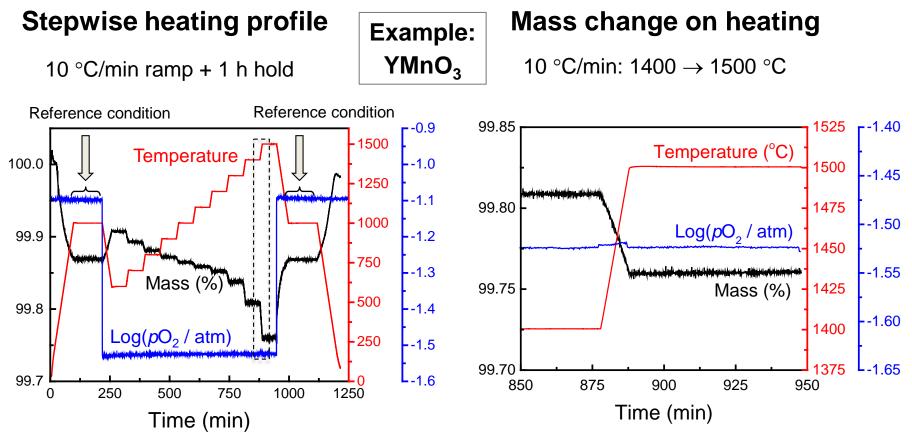
Material	Structure Type	Crystal System	Space Group
LuFeO ₃	Perovskite	Orthorhombic	Pbnm
HoFeO ₃	Perovskite	Orthorhombic	Pbnm
YFeO ₃	Perovskite	Orthorhombic	Pnma
LuCrO ₃	Perovskite	Orthorhombic	Pbnm
ErCrO ₃	Perovskite	Orthorhombic	Pbnm
HoCrO ₃	Perovskite	Orthorhombic	Pbnm
PrCoO ₃	Perovskite	Orthorhombic	Pbnm
SmCoO ₃	Perovskite	Orthorhombic	Pbnm
LaCoO ₃	Perovskite	Rhombohedral	R-3c
LaNiO ₃	Perovskite	Rhombohedral	R-3c
YMnO ₃	"LuMnO ₃ "	Hexagonal	P6 ₃ mc
LuMnO ₃	"LuMnO ₃ "	Hexagonal	P6 ₃ mc
HoMnO ₃	"LuMnO ₃ "	Hexagonal	P6 ₃ mc
SrMnO ₃	"BaMnO ₃ "	Hexagonal	P6 ₃ /mmc
BaMnO ₃	"BaNiO ₃ "	Hexagonal	P6 ₃ /mmc
CaMnO ₃	Perovskite	Cubic/Ortho	Pm3m/Pnma
LaMnO ₃	Perovskite	Orthorhombic	Pnma

Accomplishments – Thermodynamic Measurements

- 17 ABO₃ compounds were synthesized via sol-gel method and the temperature stability range of each material was tested
- Thermogravimetry (TG) was employed to measure oxygen nonstoichiometry at different oxygen partial pressures and temperatures (remain single phase), and the reduction enthalpy and entropy were extracted

Reduction:
$$\frac{1}{\delta_f - \delta_i} MO_{x - \delta_i} \rightarrow \frac{1}{\delta_f - \delta_i} MO_{x - \delta_f} + \frac{1}{2}O_2(g)$$

When at Equilibrium: $\Delta G = \Delta G^0 + RT \ln(K^{eq}) = 0$


$$K^{eq} = pO_2^{\frac{1}{2}} = \exp(-\frac{\Delta G^0}{RT}) = \exp(-\frac{\Delta H^0 - T\Delta S^0}{RT})$$
$$\frac{R}{2}\ln(pO_2) = -\frac{\Delta H^0}{T} + \Delta S^0$$

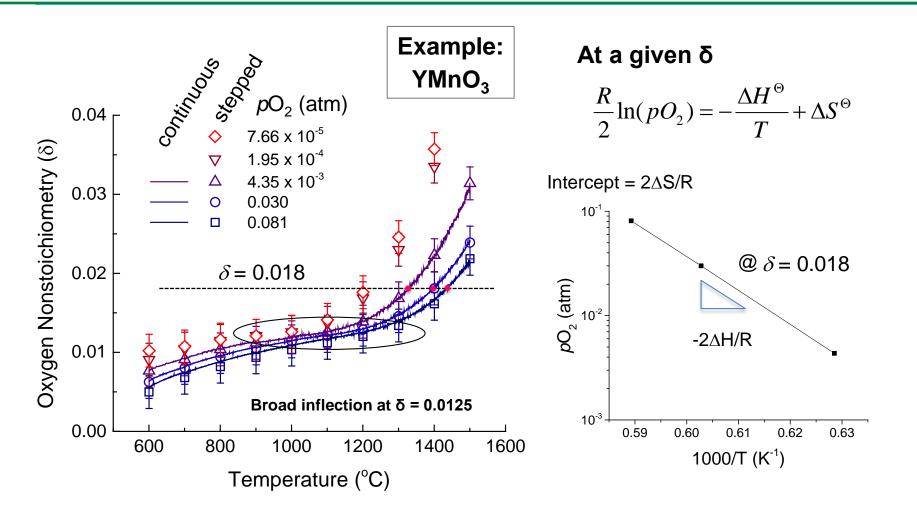
For a given δ , linear relation of $\frac{R}{2}\ln(pO_2)$ vs. $\frac{1}{T}$ gives slope= $-\Delta H^0$, intercept= ΔS^0

ΔH and ΔS control T, P for water splitting

Also, provides key data to validate computational methods

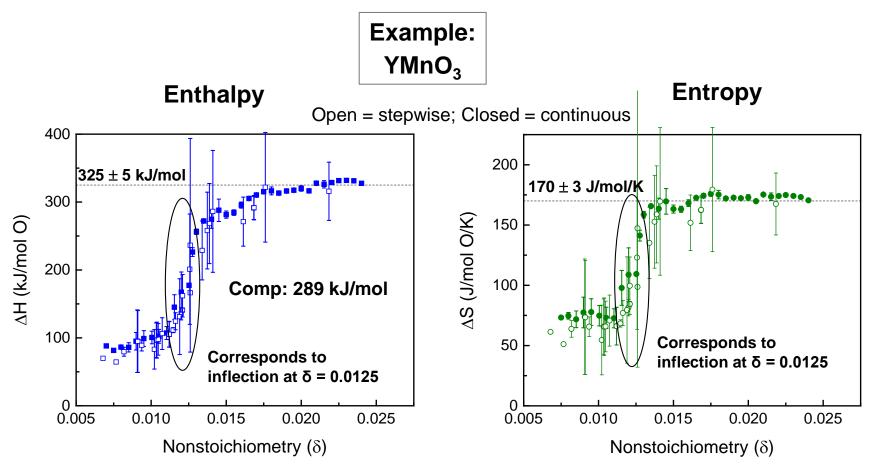
Accomplishments – Measurement Procedure

Measure under 5 different pO_2 conditions (0.030 atm shown)


Return to reference mass at end of cycle

At end of ramp step, no mass change during isothermal hold

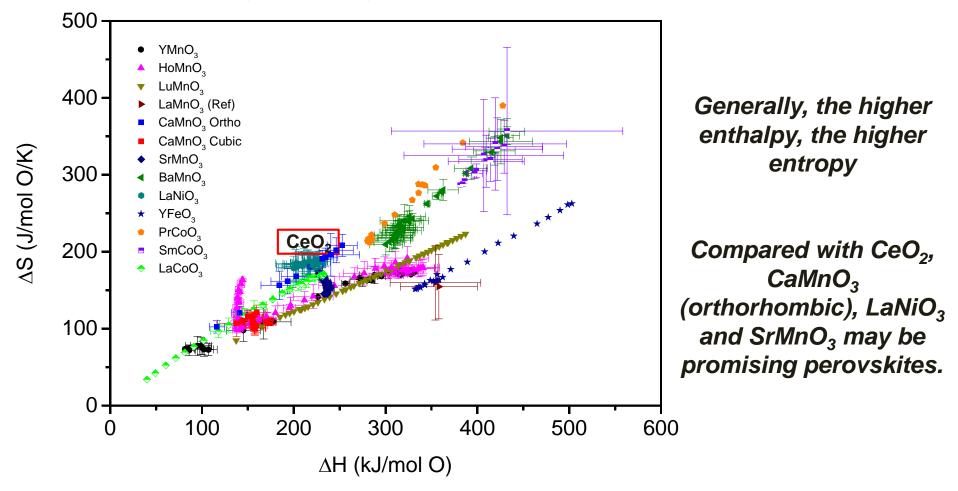
Sample was equilibrated throughout heating


HydroGEN: Advanced Water Splitting Materials

Accomplishments – Measurement Procedure

Analysis inherently smoother using data from continuous profile

Accomplishments – Measurements of Two Key Thermodynamic Quantities, ΔH and ΔS of Reduction



- Data collected in the same experiment
- Continuous heating/cooling preferred, so long as equilibration is ensured
- Below inflection δ, access oxygen interstitial sites (?), mechanistic transition (?)

Accomplishments – Are ΔH and ΔS Correlated?

Enthalpy vs. Entropy

Compare the enthalpy vs. entropy of reduction of twelve perovskites evaluated in Year-I

Accomplishments: Data-Driven Approach

The Open Quantum Materials Database (OQMD) oqmd.org Large-scale materials database of ~600,000 compounds

OQMD:

Home Materials Analysis Documentation Download

The Open Quantum Materials Database

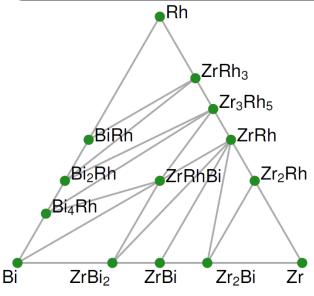
Newsflash: OQMD v1.1 is out! (Download it here.)

Welcome to the Open Quantum Materials Database

The OQMD is a database of DFT-calculated thermodynamic and structural properties. This online interface is for convenient, small-scale access; for a more powerful utilization of the data, we recommend downloading the entire database and the API for interfacing with it, from the link below.

You can...

Search for materials by composition,

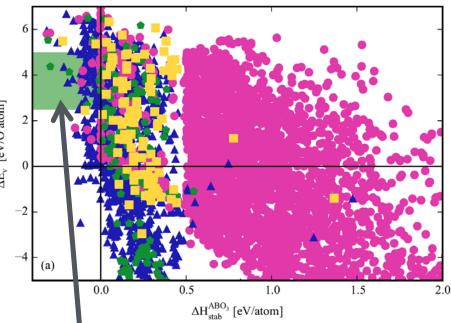

Create phase diagrams using the thermochemical data in OQMD, Determine ground state compounds at any composition, Visualize crystal structures, or Download the entire database (and the API) for your own use!

S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Ruehl and C. Wolverton, npj Computational Materials (2015) 1, 15010

Current status

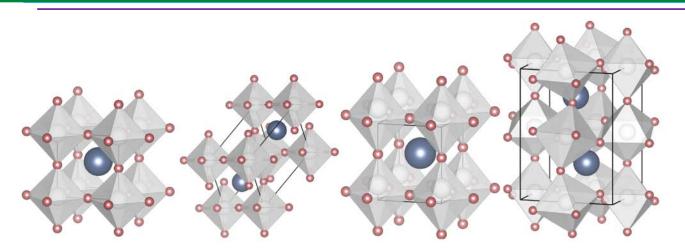
OQMD v1.1 has been released! Download it here. The database now contains **471857** entries. In addition, calculations of new structures are constantly ongoing! Recently added compounds include: EuPaBe PrPaFe PaReHg AcLaPa KPaMo





Accomplishments: High-throughput DFT Screening of STCH Materials

High-Throughput of ~11,000 ABO₃ Perovskites Screened for Stability and Reduction Enthalpy


Targeted space: Stable (x<0) and Reduction Suitable for Water Splitting (y between 2.5 to 5 eV)

Provides initial targeted compounds for experimental exploration

A.A. Emery, J.E. Saal, S. Kirklin, V.I. Hegde and C. Wolverton, Chem. Mater. (2016)

HydroGEN: Advanced Water Splitting Materials

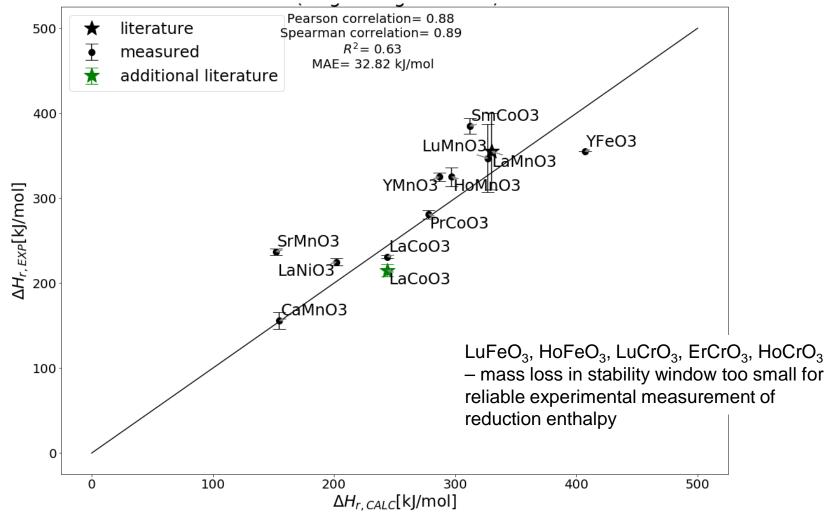
Accomplishments: Accurate DFT Vacancy Formation Energies Require Correct Crystal Structure

ABO3 compounds can exist in many structure types:

- Perovskites, with various types of distortions
- Non-perovskites

Example: YFeO3

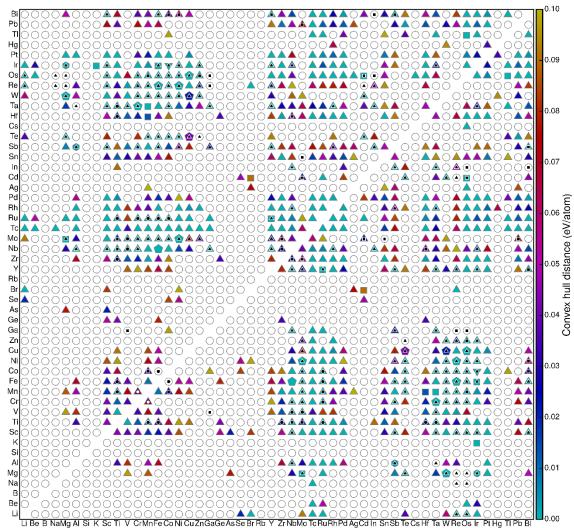
Observed ground state structure is distorted perovskite Vacancy Formation Energy in **distorted vs. cubic** perovskite = **4.22eV vs. 3.20 eV**


Previous High-Throughput Study (Emery et al., 2016), calculated vacancy formation energies in *cubic structures only*. Assumption of high-T cubic phases.

We can now compare with experimental results and find this previously-used approximation to be poor! So, we had to re-evaluate many of the vacancy formation energies with the correct ground state structures!

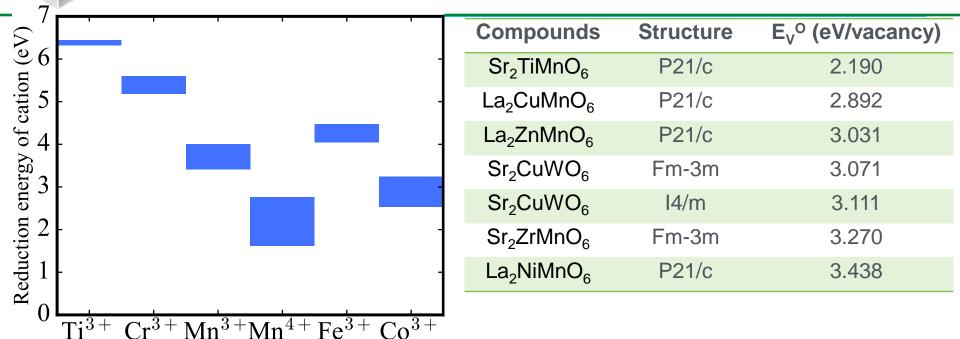
Accomplishments: Quantitative Validation of Approach

Comparison of Experimental and DFT Calculated Reduction Enthalpies


(Key factor for both reduction and water splitting reactions)

HydroGEN: Advanced Water Splitting Materials

Accomplishments: New double perovskites discovery by using high throughput (HT) screening



- HT calculations on ~10⁴ double perovskite compounds.
- Our high throughput DFT screening reproduces most already known compounds and predicts ~400 new, stable double perovskite compounds.
- Several hundred new Sr₂BB'O₆ and Ca₂BB'O₆ compounds have been discovered (not shown here)

These predicted doubleperovskites will serve as initial points of exploration for Year 2 experiments

Accomplishments: Computational Prediction of Double Perovskites for STCH

- Key finding: B-site Mn⁴⁺ is much easier to reduce than other cations. Provides a chemical target for our search double-perovskites with B-site Mn⁴⁺. (The spread of the value is mainly from the effects of octahedral distortion.)
- Therefore, we performed DFT calculations on known Mn⁴⁺ containing double perovskites, and found the oxygen vacancy formation energy varies from 2.2 to 3.4 eV/vacancy.

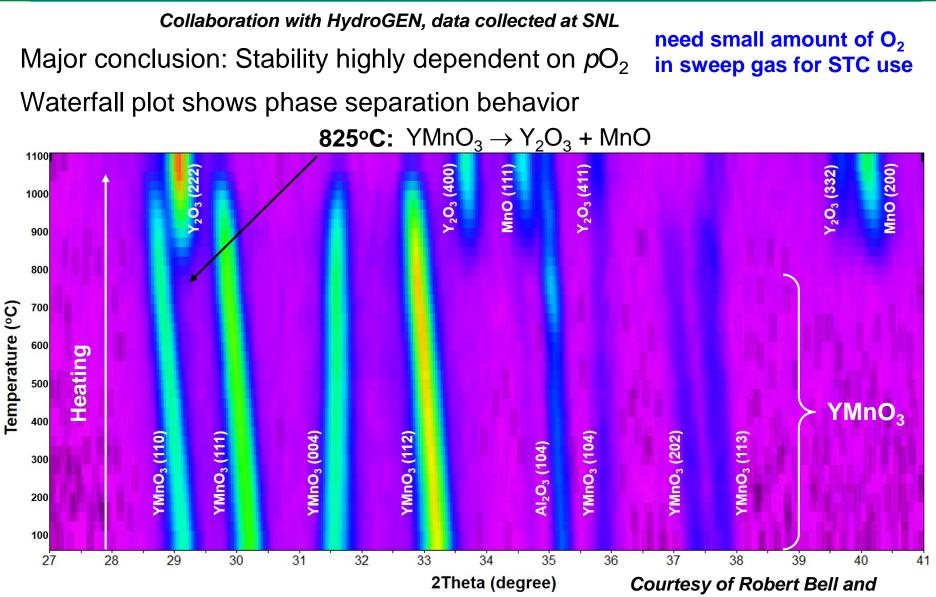
7 New Predictions for Stable Double-Perovskites with Favorable Water Splitting Thermodynamics

Collaboration: Discovery of Layered Perovskite STCH Compound

Collaboration with HydroGEN node (SNL) and other project (CSM)

Layered perovskite Ce _x Sr _{2-x} MnO ₄	Formula	Stability [eV/atom]	Decomposition reactions	Oxygen vacancy formation energy [eV/O atom]
<u> </u>	Ce _{0.1} Sr _{1.9} MnO ₄	0	Stable	1.763
	Ce _{0.2} Sr _{1.8} MnO ₄	0	Stable	2.243
A CAR .	Ce _{0.3} Sr _{1.7} MnO ₄	0	Stable	2.661
	CeSrMnO ₄	0.061	0.500 Ce ₂ O ₃ +	-
			0.500 Sr ₂ Mn ₂ O ₅	

DFT calculations suggest:


- Stability of layered perovskite for x~0.1-0.3.
- Vacancy formation energy suitable for STCH

Experimental results corroborate stability and watersplitting ability of this compound!!

Barcellos, Coury, Emery, Sanders, Tong, McDaniel, Wolverton, Kaufman, O'Hayre, "Phase identification of the layered perovskite Ce_xSr_{2-x}MnO₄ and application for solar thermochemical water splitting" submitted, 2018.

Co

Collaboration: HydroGEN Node In-Situ XRD

David Ginley, NREL

Publications/Presentations

Publications (several in preparation)

D. R. Barcellos, F. G. Coury, A. Emery, M. Sanders, J. Tong, A. McDaniel, C. Wolverton, M. Kaufman, and R. O'Hayre, "Phase identification of the layered perovskite Ce_xSr_{2-x}MnO₄ and application for solar thermochemical water splitting" submitted, 2019.

Invited Presentations (partial list)

- 2019 American Chemical Society
- 2019 Materials Research Society
- 2019 Telluride Science Research Center Workshop
- 2018 TMS

Proposed Future Work

Experimental:

- The experimental work will test site-substituted versions of the most promising materials found in Year 1
- Synthesis and testing of double perovskite compounds predicted by computation in Year 1.
- Synthesizing combinatorial samples for electrochemical testing
- Continued testing of electrochemical method and comparison to TGA (e.g., thicker samples).

Computational:

- Significantly expand range of chemistries consider for potential doubleperovskites; use experimental data from Year 1 to validate more refined thermodynamic models.
- Entropy calculations of reduction entropy to compare with TGA experiments
- High throughput DFT screening of oxygen vacancy formation energy of double perovskites
- Tailoring oxygen vacancy formation energy by A- and B-site doping: alloying Bsite metals with different reduction energies, e.g., BaMn_xCe_{1-x}O₃; alloying A-site metals to control octahedral rotation, which also has large influence on oxygen vacancy formation energy

- Experimentally measured the enthalpy and entropy of predicted twelve perovskites and validated the high-throughput DFT calculation approach.
- Validated the high-throughput electrochemical impedance approach to extract redox thermodynamics by using gradient film.
- Initiated the evaluation of predicted double perovskites and doped perovskites.