SOFC Program Mission

To enable the generation of efficient, low-cost electricity with intrinsic carbon capture capabilities for:

- **Near term**: Natural gas-based distributed generation

- **Long term**: Coal and natural gas utility-scale applications with Carbon Capture and Sequestration (CCS)
SOFC Program Structure

Key Technologies

TECHNOLOGY AREA

SOLID OXIDE FUEL CELLS

KEY TECHNOLOGIES

Cell Development

Core Technology

Systems Development
SOFC Program
R&D Approach

Applied Research

• Cell and Core Technologies
• TRL 2 – 5
• Collaboration with an SOFC Developer (industry) encouraged

Development

• State-of-the-Art systems development
• Innovative Concepts
• TRL 5 – 6

The SOFC Program is focused on the design, scale-up, and integration of the SOFC technology into modules and systems, and the development and testing of progressively larger stacks/systems.
SOFC Program Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Current</th>
<th>2020 Target</th>
<th>2025/2030 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Cost (100 kW-1MW)</td>
<td>>$12,000/kWe</td>
<td>$6,000/kWe</td>
<td>$900/kWe</td>
</tr>
<tr>
<td>Single Cell Degradation</td>
<td>0.2 - 0.5% per 1,000 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Manufacturing Approach</td>
<td>Batch</td>
<td>Semi-Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>System Degradation</td>
<td>1 – 1.5% per 1,000 hrs</td>
<td>0.5 - 1.0% per 1,000 hrs</td>
<td><0.2% per 1,000 hrs</td>
</tr>
<tr>
<td>Fuel Reformation</td>
<td>Primarily external natural gas conditioning/reforming</td>
<td>100% integrated natural gas reformulation inside cell stack</td>
<td></td>
</tr>
<tr>
<td>Durability</td>
<td><2,000 hrs</td>
<td>5,000 hrs</td>
<td>5 years</td>
</tr>
<tr>
<td>Platform</td>
<td>Proof-of-Concept</td>
<td>Prototype/Pilot</td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>Breadboard/Integrated systems</td>
<td>Fully packaged</td>
<td>Fully packaged</td>
</tr>
<tr>
<td>Fuel</td>
<td>Natural gas</td>
<td>Natural gas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simulated syngas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coal-derived syngas</td>
<td></td>
</tr>
<tr>
<td>Demonstration Scale</td>
<td>50 kWe – 200 kWe</td>
<td>200 kWe – 1 MWe</td>
<td></td>
</tr>
</tbody>
</table>

Single-cell performance and degradation meet targets; system performance, cost and durability are being evaluated
<table>
<thead>
<tr>
<th>Technology</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells</td>
<td>Manufacturing/QC</td>
</tr>
<tr>
<td></td>
<td>Chemical Instability</td>
</tr>
<tr>
<td>Stacks</td>
<td>Manufacturing/QC</td>
</tr>
<tr>
<td></td>
<td>Contacts</td>
</tr>
<tr>
<td></td>
<td>Seals</td>
</tr>
<tr>
<td>Systems</td>
<td>Degradation</td>
</tr>
<tr>
<td></td>
<td>Reliability</td>
</tr>
<tr>
<td></td>
<td>System integration</td>
</tr>
<tr>
<td></td>
<td>Balance-of-Plant</td>
</tr>
<tr>
<td></td>
<td>Operations</td>
</tr>
</tbody>
</table>
SOFC Program Development Timeline

CELL AND CORE TECHNOLOGY DEVELOPMENT
- Cell power enhancement & reliability
- Modeling & systems analysis
- Innovative stack design(s) & balance-of-plant
- Evaluation of cell/system operation on syngas
- Advanced manufacturing
- TRL 4-6
- TRL 2-5

INNOVATIVE CONCEPTS
- Surpass SPA performance, cost, and reliability
- Novel cell & stack architecture
- Advanced manufacturing
- TRL 7-9
- TRL 7-9
- TRL 6

50 kW POC
- Thermally self-sustaining
- Fully integrated system
- TRL 6
- COMPLETED

200 kW POC
- Thermally self-sustaining
- Natural gas
- TRL 6
- COMPLETED

200 kW Prototype Tests
- Natural gas
- Fully integrated system
- TRL 6
- Two awarded

1 MWe Prototype Tests
- Natural gas
- TRL 6

10 MWe Pilot(s)
- IGFC/NGFC slipstream
- CCS
- TRL 6

Commercial DG Systems
- Natural gas
- CCS capable
- TRL 7-9
- Privately funded

50 MWe Utility-Scale Pilot(s)
- First-of-a-kind
- CCS
- TRL 7-9

SOFC Program Development Timeline

- 2015
 - 50 kW POC
 - Thermally self-sustaining
 - Fully integrated system
 - TRL 6
 - COMPLETED
 - 200 kW POC
 - Thermally self-sustaining
 - Natural gas
 - TRL 6
 - COMPLETED

- 2020
 - 200 kW Prototype Tests
 - Natural gas
 - Fully integrated system
 - TRL 6
 - Two awarded
 - 1 MWe Prototype Tests
 - Natural gas
 - TRL 6

- 2025
 - 10 MWe Pilot(s)
 - IGFC/NGFC slipstream
 - CCS
 - TRL 6
 - Commercial DG Systems
 - Natural gas
 - CCS capable
 - TRL 7-9
 - Privately funded

- 2030
 - 50 MWe Utility-Scale Pilot(s)
 - First-of-a-kind
 - CCS
 - TRL 7-9
Cell and Stack Degradation Modeling
- Development of comprehensive predictive modeling tool
- Atoms to system scale bridging
- Validated through experiment

Electrode Engineering
- Mitigation of prominent degradation modes
- Successful transfer of technology to industry

Systems Engineering and Analysis
- Public dissemination of SOFC market potential, performance, and cost advantages
- Hybrid configuration assessment
- Tie to R&D goals and objectives

High Temp Optical Sensors
- Multi-application technology under development for high temperature sensing
- Demonstrated in SOFC
- In-situ sensing of temperature distribution and gas composition
SOFC R&D at Pacific Northwest National Laboratory (PNNL)

<table>
<thead>
<tr>
<th>Materials</th>
<th>Modeling</th>
<th>Small-Scale SOFC Test Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Quantitative understanding of Cr poisoning</td>
<td>• Advanced Reduced Order Models (ROM) for accurate simulation of stack performance in system models</td>
<td></td>
</tr>
<tr>
<td>• Validation of Cr capture materials</td>
<td>• Modeling to mitigate stack degradation and increase reliability</td>
<td></td>
</tr>
<tr>
<td>• Enhanced reliability of cathode/contact material interfaces</td>
<td></td>
<td>• Designed and fabricated SOFC test platform (1-10 kW)</td>
</tr>
<tr>
<td>• Cobalt-free protective coatings for metallic interconnects</td>
<td></td>
<td>• Used for evaluation of performance and reliability of emerging stack technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• First technology to be tested: Ceres Power stack module (~4 kW)</td>
</tr>
</tbody>
</table>
SOFC Power Systems
1. FuelCell Energy 200 kW Prototype Field-Test

- 200 kWe integrated SOFC Power System
- Test site: NRG Energy Center
 Pittsburgh, PA
- Natural gas fuel, Grid Connected
- Target operating time: 5,000 hrs

Photo courtesy FuelCell Energy
SOFC Power Systems

2. LG 250 kW Prototype Field-Test

- 250 kW integrated SOFC Power System
- Test site: Stark State College
 North Canton, OH
- Natural gas fuel, grid connected
- 1,300 hrs on load
- Efficiency: 55% AC
- Power degradation: 0.3% per 1000 hrs

Photo courtesy LG Fuel Cell Systems
SOFC Program
DOE Funding History

Annual Appropriation, $M

Emphasizing the resolution of design, operation, and performance considerations at the system level

Acquiring fabricating and operational experience on integrated, prototype field tests

Cell Development and Core Technology research continues and is well aligned with industry need
For Additional Information

NETL Website: www.netl.doe.gov/
SOFC Program website: www.netl.doe.gov/coal/research/energy-systems/fuel-cells

Reference Shelf:
- SOFC Program Project Portfolio
- SOFC Technology Program Plan
- Technology Readiness Assessment
- Past Workshop Proceedings
- Systems Analysis
- Fuel Cell Handbook

Dr. Shailesh D. Vora
Technology Manager, Fuel Cells
National Energy Technology Laboratory
U.S. Department of Energy
412-386-7515
Shailesh.Vora@netl.doe.gov