
U.S. DOE Office of Fossil Energy Solid Oxide Fuel Cell (SOFC) Program

To enable the generation of efficient, low-cost electricity with intrinsic carbon capture capabilities for:

- > Near term: Natural gas-based distributed generation
- Long term: Coal and natural gas utility-scale applications with Carbon Capture and Sequestration (CCS)

SOFC Program Structure Key Technologies

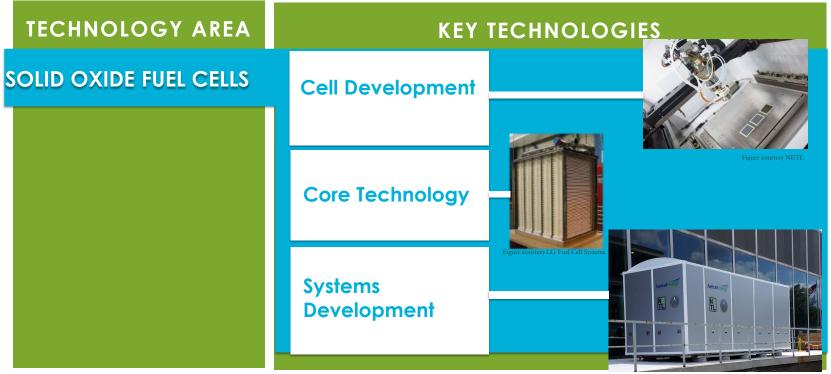


Figure courtesy FuelCell Energy

>Applied Research

- Cell and Core Technologies
- TRL 2 5
- Collaboration with an SOFC Developer (industry) encouraged

> Development

- State-of-the-Art systems development
- Innovative Concepts
- TRL 5 6

The SOFC Program is focused on the design, scale-up, and integration of the SOFC technology into modules and systems, and the development and testing of progressively larger stacks/systems

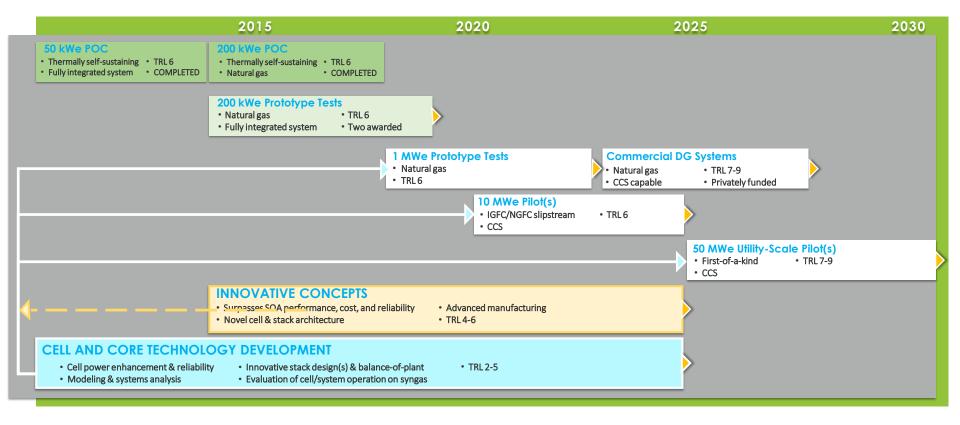
SOFC Program Project Portfolio FY19 Participants

SOFC Program Metrics

Metric	Current	2020 Target	2025/2030 Target
System Cost (100 kW- 1MW)	>\$12,000/kWe	\$6,000/kWe	\$900/kWe
Single Cell Degradation	0.2 - 0.5% per 1,000 hrs		
Cell Manufacturing Approach	Batch	Semi- Continuous	Continuous
System Degradation	1 – 1.5% per 1,000 hrs	0.5 - 1.0% per 1,000 hrs	<0.2% per 1,000 hrs
Fuel Reformation	Primarily external natural gas conditioning/reforming	100% integrated natural gas reformation inside cell stack	
Durability	<2,000 hrs	5,000 hrs	5 years
Platform	Proof-of-Concept	Prototype/Pilot	DG: Commercial Utility-scale: Pilot
Configuration	Breadboard/Integrated systems	Fully packaged	Fully packaged
Fuel	Natural gas	Natural gas Simulated syngas	Natural gas Coal-derived syngas
Demonstration Scale	50 kWe – 200 kWe	200 kWe – 1 MWe	DG:MWe-classUtility-scale:10 - 50 MWe

Single-cell performance and degradation meet targets; system performance, cost and durability are being evaluated

SOFC Program *R&D Gaps*



Technology	Topic	
Cells	Manufacturing/QC	
Cells	Chemical Instability	
	Manufacturing/QC	
Stacks	Contacts	
	Seals	
	Degradation	
	Reliability	
Systems	System integration	
	Balance-of-Plant	
	Operations	

SOFC Program Development Timeline

SOFC R&D at NETL

Cell and Stack	Electrode Engineering	Systems Engineering and	High Temp Optical
Degradation Modeling		Analysis	Sensors
 Development of comprehensive predictive modeling tool Atoms to system scale bridging Validated through experiment 	 Mitigation of prominent degradation modes Successful transfer of technology to industry 	 Public dissemination of SOFC market potential, performance, and cost advantages Hybrid configuration assessment Tie to R&D goals and objectives 	 Multi-application technology under development for high temperature sensing Demonstrated in SOFC In-situ sensing of temperature distribution and gas composition

SOFC R&D at Pacific Northwest National Laboratory (PNNL)

Materials	Modeling	Small-Scale SOFC Test Platform
 Quantitative understanding of Cr poisoning Validation of Cr capture materials Enhanced reliability of cathode/contact material interfaces Cobalt-free protective coatings for metallic interconnects 	 Advanced Reduced Order Models (ROM) for accurate simulation of stack performance in system models Modeling to mitigate stack degradation and increase reliability 	 Designed and fabricated SOFC test platform (1-10 kW) Used for evaluation of performance and reliability of emerging stack technologies First technology to be tested: Ceres Power stack module (~4 kW)

SOFC Power Systems 1. FuelCell Energy 200 kW Prototype Field-Test

- 200 kWe integrated SOFC Power System
- Test site: NRG Energy Center Pittsburgh, PA
- Natural gas fuel, Grid Connected
- Target operating time: 5,000 hrs

Photo courtesy FuelCell Energy

SOFC Power Systems 2. LG 250 kW Prototype Field-Test

- 250 kW integrated SOFC Power System
- Test site: Stark State College North Canton, OH
- Natural gas fuel, grid connected
- ▶ 1,300 hrs on load
- Efficiency: 55% AC
- Power degradation: 0.3% per 1000 hrs

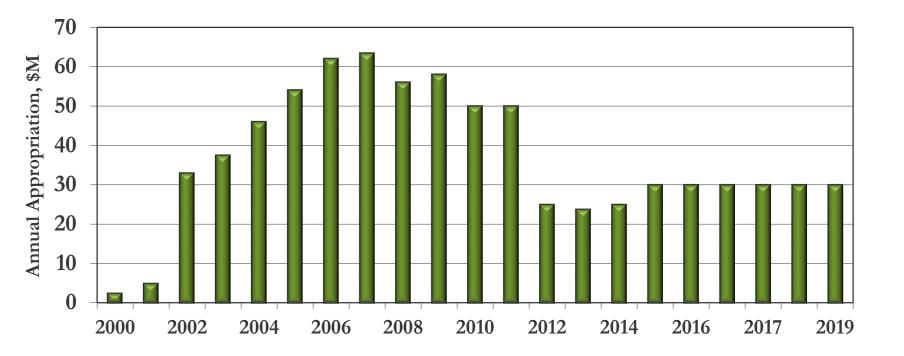


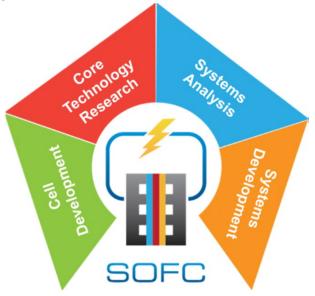
Photo courtesy LG Fuel Cell Systems

SOFC Program DOE Funding History

- Emphasizing the resolution of design, operation, and performance considerations at the system level
- Acquiring fabricating and operational experience on integrated, prototype field tests
- Cell Development and Core Technology research continues and is well aligned with industry need

For Additional Information

Office of Fossil Energy: www.energy.gov/fe/office-fossil-energy **NETL** Website: **SOFC Program website:**


www.netl.doe.gov/

www.netl.doe.gov/coal/research/energy-systems/fuel-cells

Reference Shelf:

- SOFC Program Project Portfolio
- SOFC Technology Program Plan
- Technology Readiness Assessment
- Past Workshop Proceedings
- Systems Analysis
- Fuel Cell Handbook

Dr. Shailesh D. Vora **Technology Manager, Fuel Cells** Ational Energy Technology Laboratory U. S. Department of Energy 412-386-7515 Shailesh.Vora@netl.doe.gov

