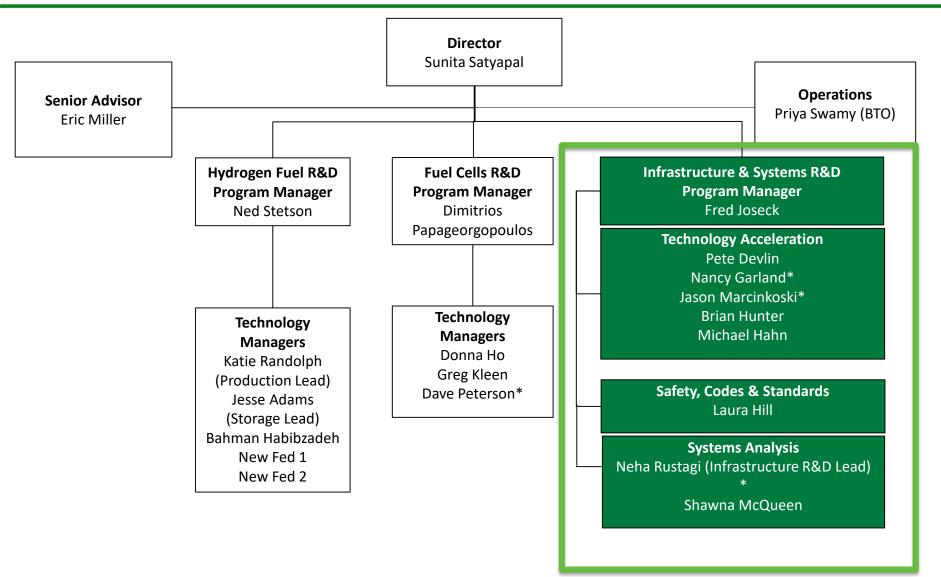


Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Infrastructure and Systems R&D and Safety Codes & Standards Overview

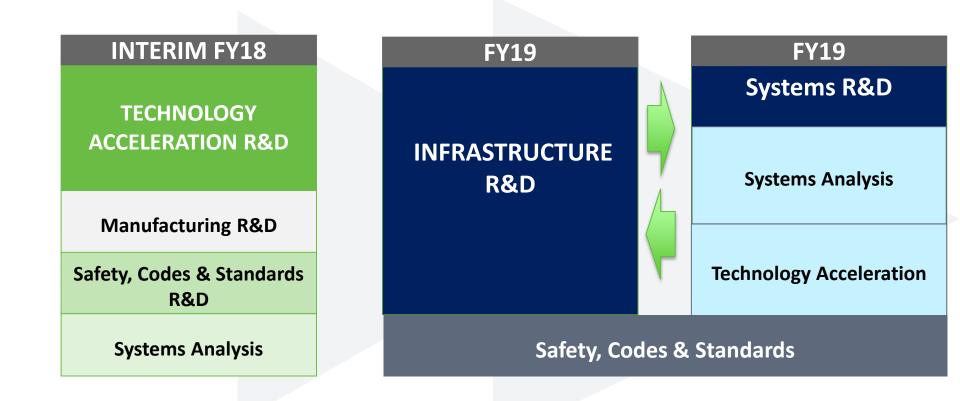
Fred Joseck

Infrastructure and Systems R&D Program Manager


Fuel Cell Technologies Office

2019 Annual Merit Review and Peer Evaluation Meeting

April 29, 2019 – Washington, DC


What's New in FY 2019: Organization

* Supports multiple Program areas

New Structure

Transformation of Infrastructure and Systems R&D and Safety, Codes & Standards from FY18 to FY19

Infrastructure and Systems R&D Priorities

R&D Focus Areas

 Low-cost, high-efficiency liquefaction, pipelines, chemical carriers, and tube trailers

Station

 Low-cost and reliable compressors, pumps, dispensers, and stationary storage

 Grid integration of hydrogen production and novel methods of manufacturing and improvements in durability

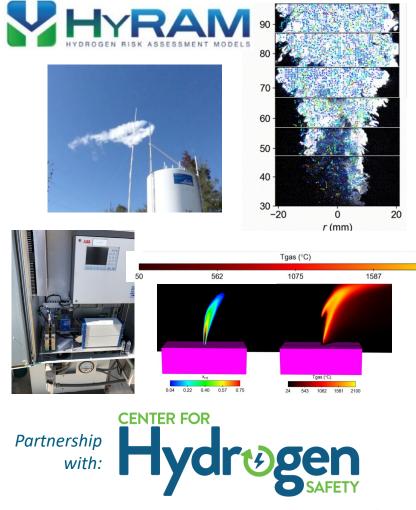
 Overarching systems analysis to inform R&D priorities and determine impact

Goal

Less than \$7/kg hydrogen fuel in early markets, including production, distribution, and dispensing

Early-Stage R&D to reduce cost of hydrogen storage, use and transport to enable H2@Scale

Safety, Codes & Standards (SCS) Goals & Objectives


Mission: Fund R&D needed to develop science-based codes and standards, thereby enabling the safe deployment of H₂ and fuel cell technologies

Codes & Standards

- Conduct **R&D to provide critical data** and information needed to define requirements in developing codes and standards.
- Support and facilitate development of essential codes and standards to enable widespread deployment of hydrogen and fuel cell technologies and completion of essential regulations, codes and standards (RCS).

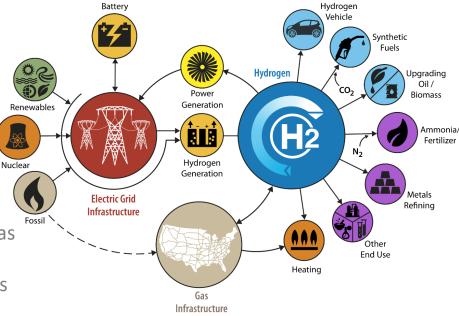
Safety

- Ensure that best safety practices underlie activities supported through DOE-funded projects.
- Enable widespread sharing of safety-related information resources and lessons learned with key stakeholders.

An AIChE Technical Community • A Global Resource On Hydrogen Safety

FY18-19 Budget

F)


F)

	(Do	llars in Thou	sands)		
	Subprogram Distribution	FY 2018	FY19 Enacted		
	Total Appropriation/Requested Fund	115,000	120,000		
Fuel C	Fuel Cell R&D		32,000	30,000	
Hydro	ogen Fuel R&D		54,000	39,000	_
Infras	structure R&D		0	21,000	
Techn	nology Acceleration R&D		19,000	21,000	
Syste	ms Analysis		3,000	2,000	
Safety	y, Codes and Standards (SCS)		7,000	7,000	
\$ 21M 19 Enacted	Koy Eocus Aroas				
\$ 21M 19 Enacted	\$ 21M EnactedTech Acceleration R&D Key Focus AreasExamples:• Grid integration & energy generation • Medium/heavy-duty vehicle fueling • New applications for hydrogen (e.g., rail & marine sector)				

Infrastructure and Systems R&D and Safety, Codes & Standards Accomplishments

H2@Scale Analysis

- Identify potential demand
- Examine supply resources
- Identify impact potential
- Identify infrastructure issues
- Evaluated economic potential of hydrogen demand in 5 scenarios
 - Scenarios considered natural gas price, electricity price, grid integration, R&D advancements
- Performed stage-gate review
- Evaluating regional scenarios
- Examined economic inertia and externalities
- Performing spatial analysis

Regional & Economic Scenario Analysis (FY19)

Initial Step 🗸

(Complete)

In-Depth

Analysis 🗸

Idaho National Laboratory

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

FUEL CELL TECHNOLOGIES OFFICE

H2@Scale Analysis: Estimated Maximum Scale for Hydrogen

Application	Maximum Scale (MMT* H ₂ / year)
Refineries & CPI [§]	8
Metals	12
Ammonia	4
Synthetic Fuels and Chemicals	14
Biofuels	4
Natural Gas Supplementation	10
Light Duty (FCEVs)	57 Prelir 29
Other Transport (Medium- &	29
Heavy- Duty Fuel Cell Veh.)	
Electricity Storage	28
Total	166

Economic potential for hydrogen is estimated to be 15-50 MMT/yr in 2050

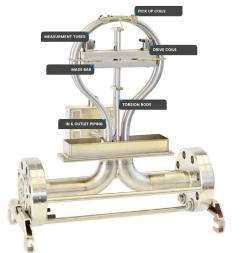
* MMT: Million metric tonnes

[§] CPI: Chemical Processing Industry not including metals, ammonia, methanol, or biofuels

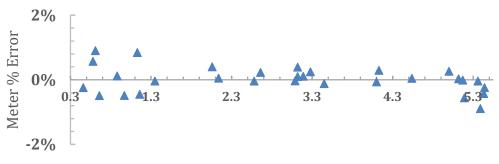
Light duty vehicle calculation basis: 190,000,000 light-duty FCEVs from <u>http://www.nap.edu/catalog/18264/transitions-to-alternative-vehicles-and-fuels</u> # Definition: The maximum scale is the estimated hydrogen demand constrained by the services for which society currently uses energy, real-world geography, and system performance, but not by economics.

SA171

Focuses of current activities include:

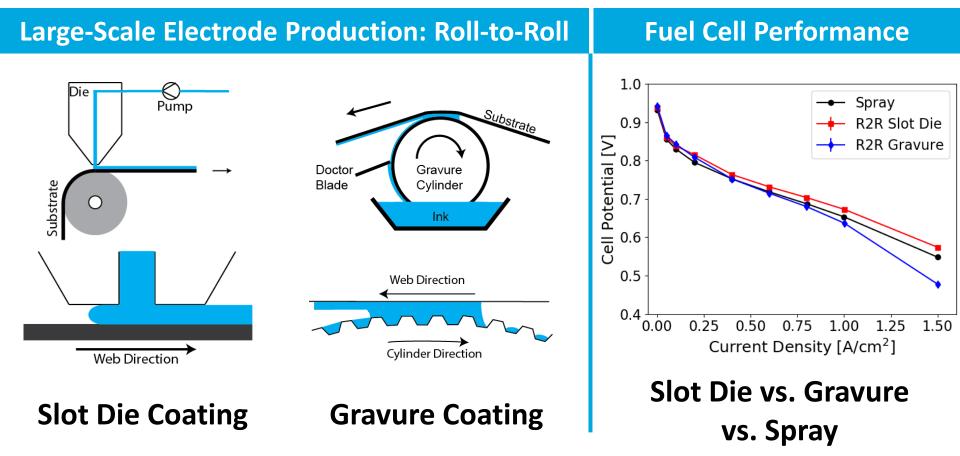

- 1) Reducing expansion of seals in hydrogen by 50%.
- 2) Enhancing life of vessels by 50% through improved understanding of crack nucleation.
- 3) Enhancing fracture toughness of high-strength (>950 MPa) steels by 50%.

For more information, please visit <u>https://www.energy.gov/eere/fuelcells/h-mat-hydrogen-materials-consortium</u> or contact <u>h-matinfo@pnnl.gov</u>


Infrastructure R&D Accomplishment: Fueling Station R&D

Dispenser Accuracy and Reliability (IVYS Energy Solutions, Inc.; Rheonik GmBH, NREL)

- Utilized Dedicated Short-Range
 Communication (DSRC) technology to enable wireless communication per SAE J2799 protocol.
 - Developed Coriolis flow meters that achieve 2% accuracy during SAE J2601 fills.



Mass Dispensed [kg]

IN009

Technology Acceleration R&D Accomplishment: Comparison of MEA Fabrication Methods

TA008

R2R coated gas-diffusion electrode methods are >200x faster than spray coating and the MEAs perform as well.

Technology Acceleration R&D Accomplishment: [High-Temperature Electrolysis Test Facility

Developed capability to simulate grid conditions (e.g. perturbations in frequency and voltage) to test response of high-temperature electrolyzers (HTE)

- Demonstrating HTE module response rates to support grid stability
- Conducting HTE stack degradation test with real-time measurement of stack performance
- Characterizing HTE performance under dynamic grid conditions

25 kW HTE Test Facility within the INL Energy Systems Laboratory

TA018

Technology Acceleration R&D Accomplishment: Demonstration of Fuel Cells for Medium-Duty Trucks

Fuel Cell Delivery Truck R&D (FedEx Express, Plug Power, Workhorse)

Developed fuel cell hybrid electric parcel delivery van to extend battery-electric vehicle range **from 60 miles to >150 miles**.

First unit truck validation completed in Albany, NY

- Fuel cell availability greater than 98%
- Over 15,000 miles logged

TA011

Fuel Cell Delivery Truck R&D (CTE, UPS, CEM, UES, LiithiumWerks, Hydrogenics)

Developed fuel cell hybrid electric parcel delivery van to extend battery-electric vehicle range **from 75 to >125 miles**.

Completed first unit vehicle acceptance testing and began initial route operations.

Technology Acceleration R&D Accomplishment: Demonstration of Mobile Fueling and Auxiliary Equipment

Innovative Advanced Hydrogen Mobile Fueler (Electricore, Air Liquide, HTEC, QAI, Manta)

Designed and developed advanced hydrogen mobile fueler (AHMF) capable of fueling approximately 20-40 fuel cell vehicles per day up to 70 MPa with -40 C cooling.

Design of AHMF is complete and assembly is currently underway.

TA017

Fuel Cell Ground Support Equipment (Plug Power, FedEx, Charlatte)

Developed and demonstrated fuel cell powered ground support equipment.

Two tuggers operating at Albany airport.

Hydrogen Safety is a Priority

	Analysis & Validation	Measured scaling of flame length and heat flux at cryogenic temps and demonstrated means of large-scale release diagnostic	90 -
A	Risk Assessment	Expanded HyRAM flexibility in version 2.0 through updated methodology and open source availability	70 - 60 -
	Sensors and Detectors	Developed preliminary guidance for indoor sensor placement; demonstrated detection of <1 ppm CO in field testing	50
	Enabling Infrastructure	Performed R&D to support another 50% reduction in bulk gaseous H ₂ storage requirements in the 2020 edition of NFPA 2	-20 0 r (mm)
I SI	Partnership	Partnered with AIChE's Center for Hydrogen Safety to promote safe operation, handling, and use of H ₂	Tgas (°C) 24 543 1062 1581 2100

SCS Accomplishment: Center for Hydrogen Safety

PNNL and AIChE Partner to Establish the Center for Hydrogen Safety

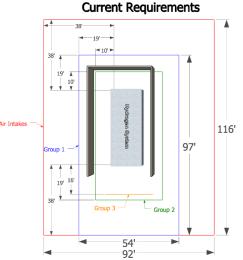
The CHS is a not-for-profit, global, membership organization within the American Institute of Chemical Engineers (AIChE) that promotes the safe operation, handling, and use of hydrogen and hydrogen systems across all installations and applications. The CHS identifies and addresses concerns regarding the safe use of hydrogen.

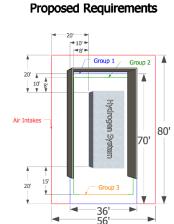
Membership Benefits Include...

- Access to the U.S. Hydrogen Safety Panel (HSP) for reviews and support
- Education (continuing education units [CEUs]), training, and outreach materials
- Provide leadership and facilitation of hydrogen safety issues
- Conferences and networking opportunities

An AIChE Technical Community • A Global Resource On Hydrogen Safety

www.aiche.org/chs


SCS019


SCS Accomplishment: Enabling Reduced Setback Distances

Pending changes to the NFPA 2 Hydrogen Technologies Code (2020 Edition) will result in further <u>reduction in setback distances of up to 50%</u> for gaseous hydrogen storage systems.

- Risk-informed analysis enabled an initial 50% reduction in bulk gaseous storage setback distances from 2005 to 2011*
- Further SCS efforts have enabled **new gaseous hydrogen setback distances** in the 2020 Edition of the NFPA 2 Hydrogen Technologies Code
- A newly completed rigorous analysis characterized footprint of conventional and potential future fueling station designs and identified technologies that can **enable up to 20% reduction in footprint area**

	NFPA 55 (2005)	NFPA 2 (2011, 2016)	NFPA 2 (2020)	
	GH2 - ft (m)	GH2 - ft (m)	GH2 - ft (m)	μ
Group 1 Exposures (lot lines, air intakes, openings, ignition sources)	50 (15)	34 (10)	16 (5)	
Group 2 Exposures (exposed persons, parked cars)	15 (4.6)	16 (5)	13 (4)	
Group 3 Exposures (buildings, flammable gas storage, combustibles, etc.)	15 (4.6)	14 (4)	13 (4)	

Example gaseous storage footprint under the 2016 edition (left) and 2020 edition (right) of NFPA 2

*DOE Hydrogen and Fuel Cells Program Record #15006

Collaborations

Memorandum of Understanding (MOU)

ARMY GROUND VEHICLE SYSTEMS CENTER

H₂ infrastructure joint workshop Cryo-compression research at ANL Emergency relief truck research

DEPARTMENT OF TRANSPORTATION FEDERAL RAILROAD ADMINISTRATION

Fuel cell rail joint workshop TCO analysis for rail applications

MARITIME ADMINISTRATION Pier side power project siting (Scripps Institute)

MICHIGAN ECONOMIC DEVELOPMENT CORPORATION

Infrastructure roadmap

Small Business Innovation Research Program (SBIR) & Funding Opportunity Announcements (FOAs)

OFFICE OF SCIENCE

SBIR Projects on fueling station technologies (e.g. dispensers, compressors, storage, contaminant detectors) EPSCOR FOA on Materials Compatibility

OFFICES OF WIND ENERGY, SOLAR ENERGY, GEOTHERMAL ENERGY, NUCLEAR ENERGY, FOSSIL ENERGY, & ADVANCED MANUFACTURING

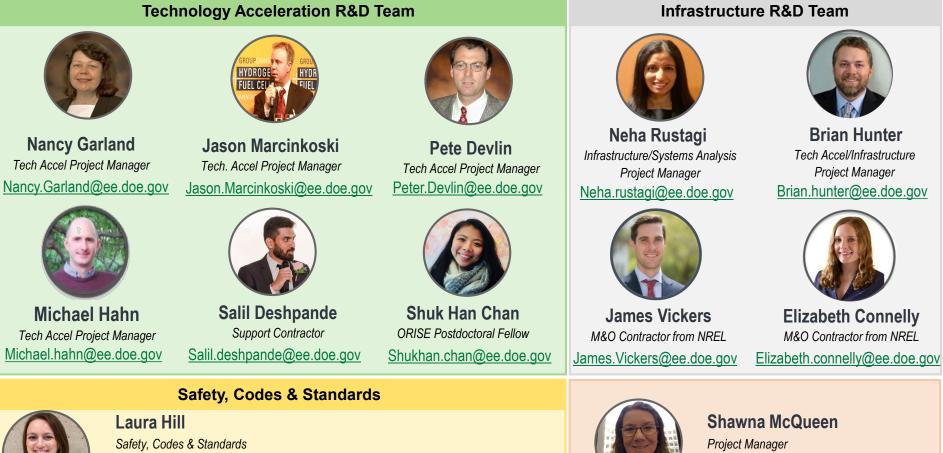
H2@Scale FOA - Integrated production, storage, and fueling system pilot

Cross-Cutting Work

CYBERSECURITY WORKING GROUP

U.S. DRIVE TECH TEAMS

Infrastructure and Systems R&D


and Safety, Codes & Standards Teams

Fred Joseck

Infrastructure and Systems R&D Program Manager

Fred.Joseck@ee.doe.gov

Shawna.mcqueen@ee.doe.gov

Tech Accel Project Manager Michael.hahn@ee.doe.gov

Project Manager Laura.hill@ee.doe.gov

Thank You

Fred Joseck

Infrastructure and Systems R&D Program Manager,

Fuel Cell Technologies Office

Fred.joseck@ee.doe.gov

hydrogenandfuelcells.energy.gov

Panel Discussion

Potential Questions for Panel Discussion

- 1. What are some key changes in the program in FY19? (Neha-Infras., Michael-TA, Laura-SCS, Fred-SA)
- 2. Given the emerging interest in medium and heavy duty vehicles, can you explain your activities in this space? (Brian)
- 3. With the interest in fuel cells for these new transportation applications, how are you engaging and coordinating with stakeholders in industry, various government agencies, and international agencies? (Pete)
- 4. How are you increasing participation of the manufacturing industry as suppliers to the fuel cell industry. (Nancy)
- 5. Can you explain how you are broadening coordination with external stakeholders in other areas important to H2@Scale, such as utilities? (Neha & Fred)