2019 DOE Hydrogen and Fuel Cells Program Annual Merit Review

Analysis of Cost Impacts of Integrating Advanced On-Board Storage Systems with Hydrogen Delivery

Amgad Elgowainy (PI), Ed Frank, Krishna Reddi, Yusra Khalid, and Jui-Kun Peng Argonne National Laboratory

Daryl Brown, Energy Technology Analysis

April 30, 2019

SA170

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

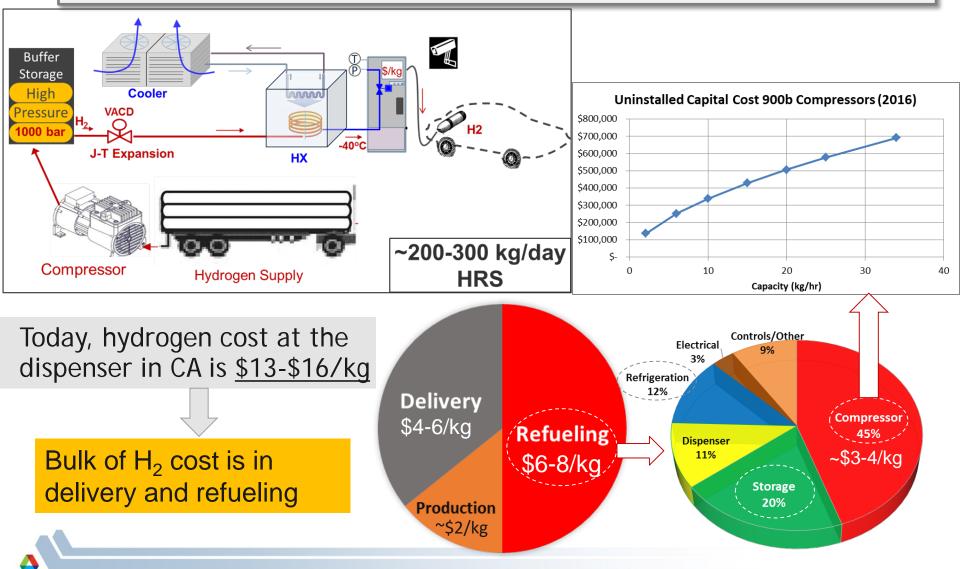
- Start: October 2017
- End: Determined by DOE
- % complete (FY19): 70%

Barriers to Address

- Inconsistent data, assumptions and guidelines
- Insufficient suite of models and tools
- Stove-piped/Siloed analytical capability for evaluating sustainability

Budget

• Funding for FY19: \$70K

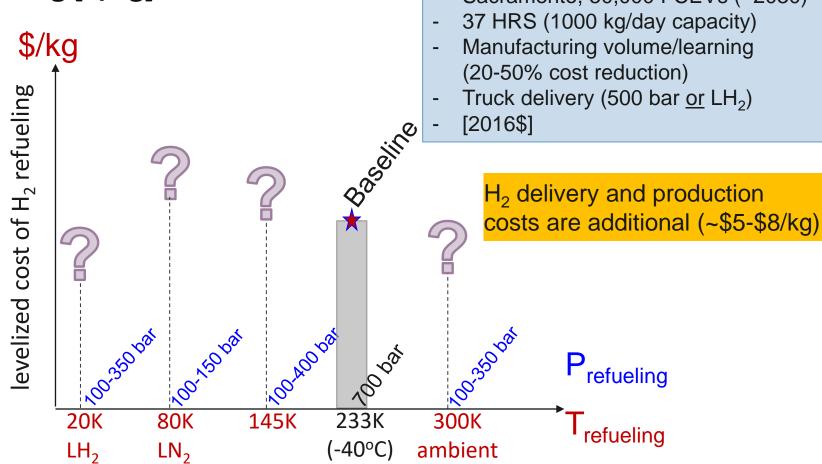

Partners/Collaborators

- U.S.DRIVE: Hydrogen Interface Taskforce (H2IT)
- Energy Technology Analysis (ETA)

Relevance/Impact

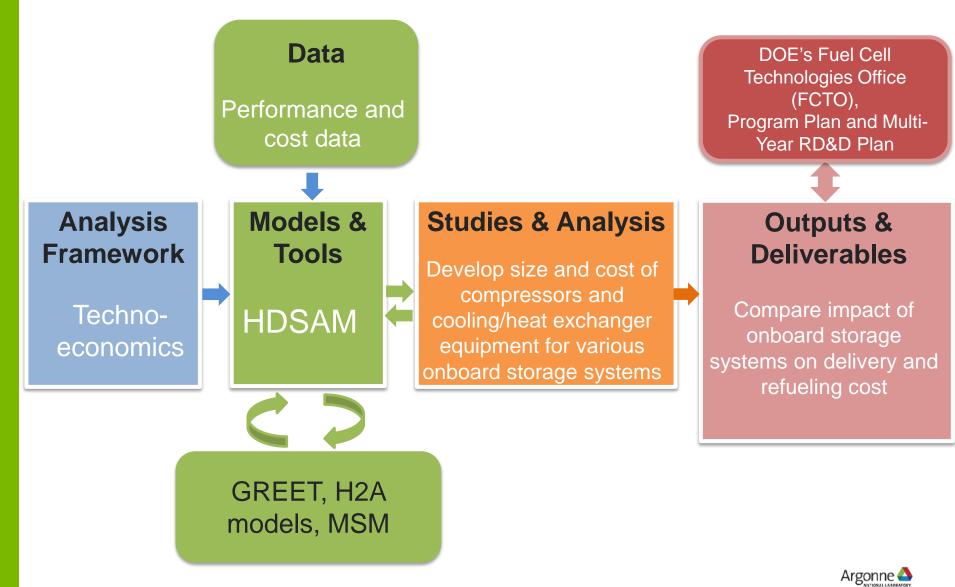
Objective: Evaluate impacts of FCEV on-board storage technologies on levelized cost of hydrogen refueling

Pathways for consideration - Relevance

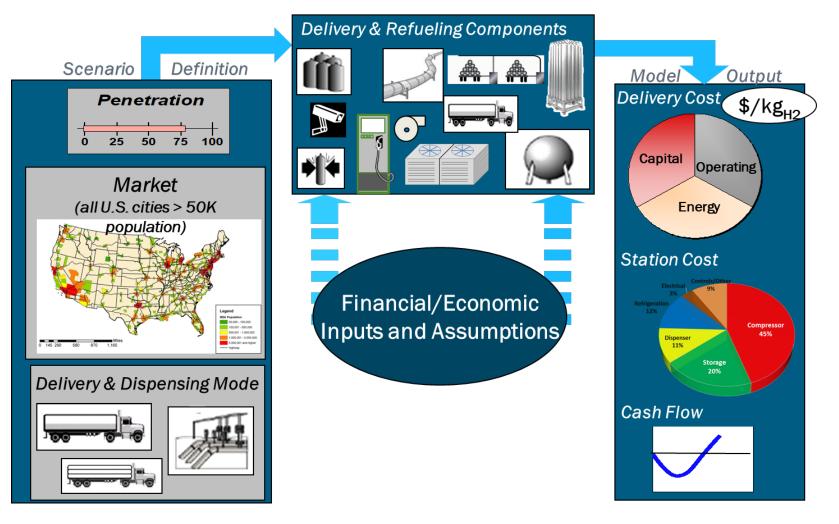

- ✓ 700 bar storage/refueling (baseline)
- ✓ Material Storage:
 - Metal Hydride (MH) storage/refueling
 - Sorbent storage/refueling
 - > Cryo-sorbents/refueling

Cryo-compressed hydrogen (CcH₂) storage/refueling

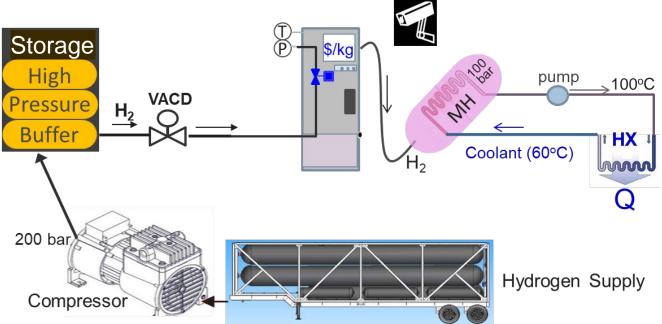
Storage System	System Model Source	Operating Temperature	Operating Pressure
700 bar Compressed H ₂	Baseline	Ambient (-40 to 85°C)	5 bar to 875 bar
350 bar Cryo-compressed (CcH ₂)	ANL	35 to 93 K	5 to 350 bar
100 bar Cryo-Adsorbent cryo-cooled	ANL	145 to 215 K	5 to 100 bar
Metal hydrides (MH) and Sorbents	ANL	Near ambient to 120ºC	5 to 100 bar


Deliverable of Analysis - Objective

Evaluate impact of P-T tradeoffs on levelized cost of hydrogen
refueling [\$/kg]
Sacramento, 50,000 FCEVs (~2030)


Dispensing P & T strongly impact refueling cost

Impact of onboard storage system on delivery and refueling cost – Relevance/Approach


Develop new delivery and refueling pathways in HDSAM for onboard systems – Approach

https://hdsam.es.anl.gov/index.php?content=hdsam

Low-Pressure, Near or Above Ambient Temperature Refueling (Material Storage: MH and Sorbents)

Example of low P, near ambient T refueling: Metal Hydride – Accomplishment

Examine thermolytic, reversible metal hydride (MH)

 $M + x/2 H_2 \rightleftharpoons MH_x + Q$ (exothermic charging)

- Refueling equipment must deliver hydrogen (for 100 bar, 300K fills) and remove heat of adsorption (Q) and heat of compression
- Material storage recharges at ~constant pressure, P_{eq}

Low-P, Near/above Ambient T: Prior Results and Context – Accomplishment

 <u>Objective</u>: Compare levelized refueling cost for low-P, near ambient T onboard to 700 bar baseline

 \succ H₂ delivery and production costs are additional (~\$5-\$8/kg)

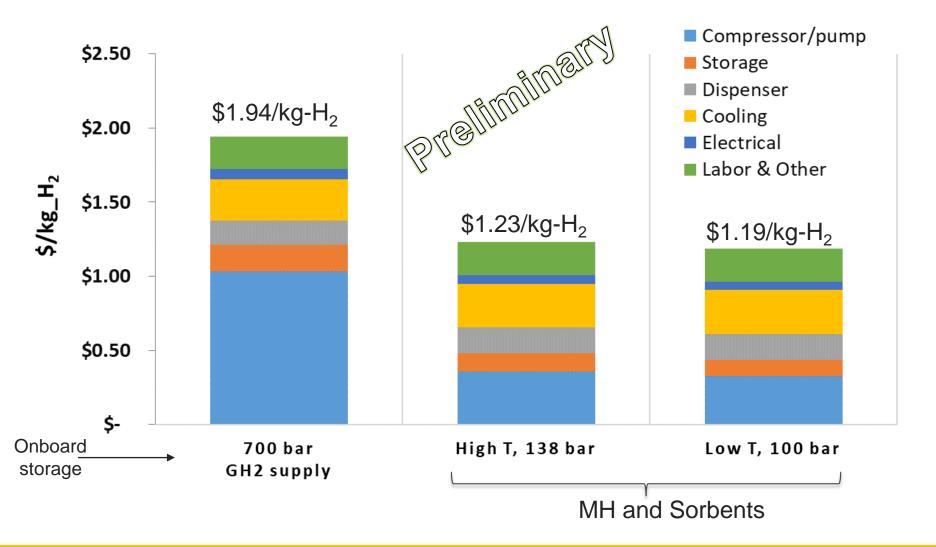
- Prior Results:
 - > Constraints and van't Hoff eqn. imply ΔH is 27-41 kJ/mol-H2
 - Defined two bracketing cases via the literature

Cooo	ΔН	Peak Heat [MW]	Coolant Te	Р	
Case	ДП		out, °C	in, ⁰C	[MPa]
Low T, Low ∆H	28	0.6	100	60	10
High T, High ∆H	47 37	1.1 0.5	168 148	130 130	14

- Cooling against ambient with air cooled HX (ACHX) is feasible
- > Cooling fluid ΔT limited to ~30-40K, else will impair charging kinetics
 - ✓ Heat duty must be met with coolant mass rate

Low-P, Near Ambient T: New Results – Accomplishment

Progress since last reporting:


- Validated ACHX costs via two vendor quotes
- Included four new pathways in HDSAM
- Conducted sensitivity analysis
- \succ Documented the analysis in a paper (under review)
- Summary of key TEA Inputs:

Note: One ACHX per dispenser, 3 dispensers per station

Scenario	H ₂ fill	ACHX cost,	Pump cost,	ACHX Fan	Circulation
	pressure, bar	\$2018	\$2018 a	Power, kW	Power, kW
Low <u>AH</u>	100	52,000	6,500	5.1	1.3
High ∆H	138	51,000	7,700	4.4	7.4
$\overset{a}{\sim}$ Adjusted to 2018 from 1998 via the CEPCI. Uninstalled cost. Installation factor = 2					

Low-P, Near Ambient T: MH and sorbents – Accomplishment

CONTRIBUTIONS TO REFUELING COST

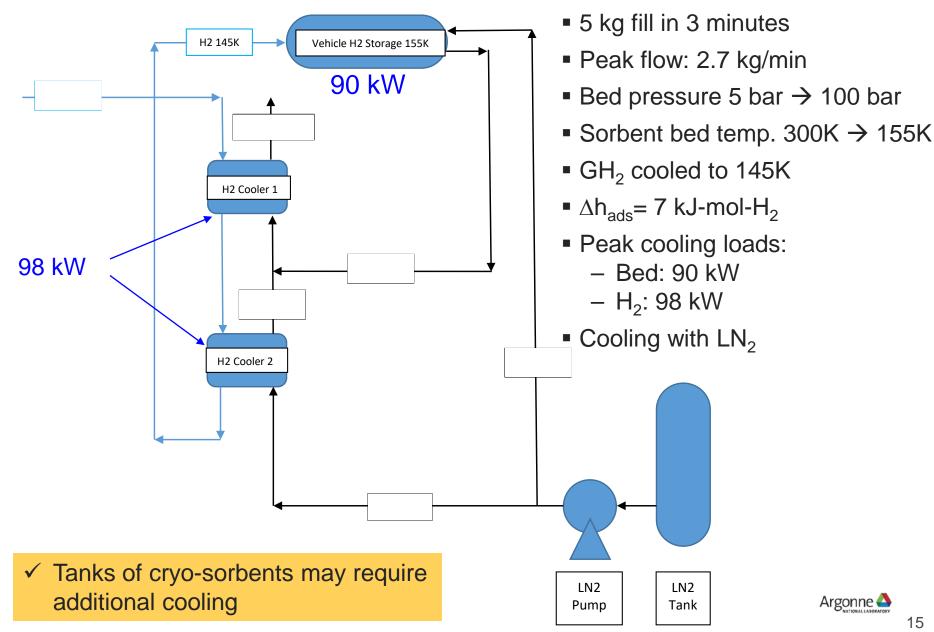
Low-pressure, near ambient temperature material storage reduce HRS cost 12

Low-P, Near Ambient T: Sensitivity Analysis – Accomplishment

	Parameter Value		Refueling Cost,			
					\$/kg	
Parameter	Low	Baseline	High	Low	Baseline	High
ACHX area, sf	150	300	600	\$1.21	\$1.23	\$1.27
ACHX fan power, kW	2.2	4.4	8.8	\$1.21	\$1.23	\$1.26
Coolant pump power, kW	3.7	7.4	14.7	\$1.23	\$1.23	\$1.24
ACHX fan runtime, hr/day	8	18	24	\$1.21	\$1.23	\$1.24
Fill pressure, MPa	10	13.8	20	\$1.19	\$1.23	\$1.28
Attendants, # of people	0	0.46	1	\$1.08	\$1.23	\$1.40

Large variations of most key parameters had little effect

ACHX small vs. chemical processing industry

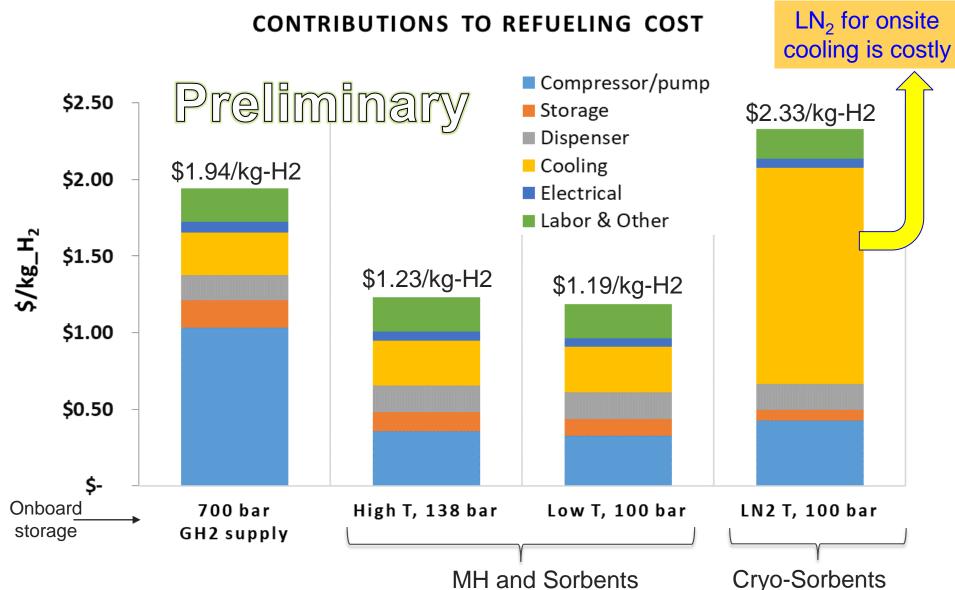

 \succ Cooling power small vs. compressor power \rightarrow low sensitivity

The largest cost increase occurs if self-service is impractical

R&D needed to develop manageable interconnect for hot coolant lines and H₂

Low-Pressure, LN₂ Temperature Refueling (Cryo-sorbents)

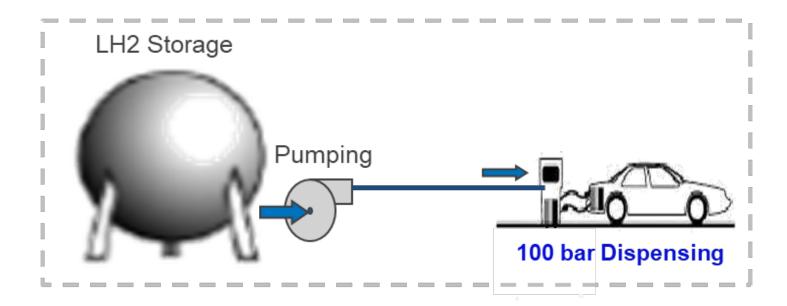
Cooling System for Cryo-Sorbent Refueling with GH₂ – Accomplishment



Low P, LN2 temperature refueling case – Accomplishment

Scenario	Heat Duty	H ₂ T _{inlet}	H ₂ T _{outlet}	HX UA	Uninstalled HX cost (per dispenser)
	[kW]	[K]	[K]	[W/K]	[\$]
Cooler 1	94	300	151	4360	61,000
Cooler 2	4	151	145	280	4,000

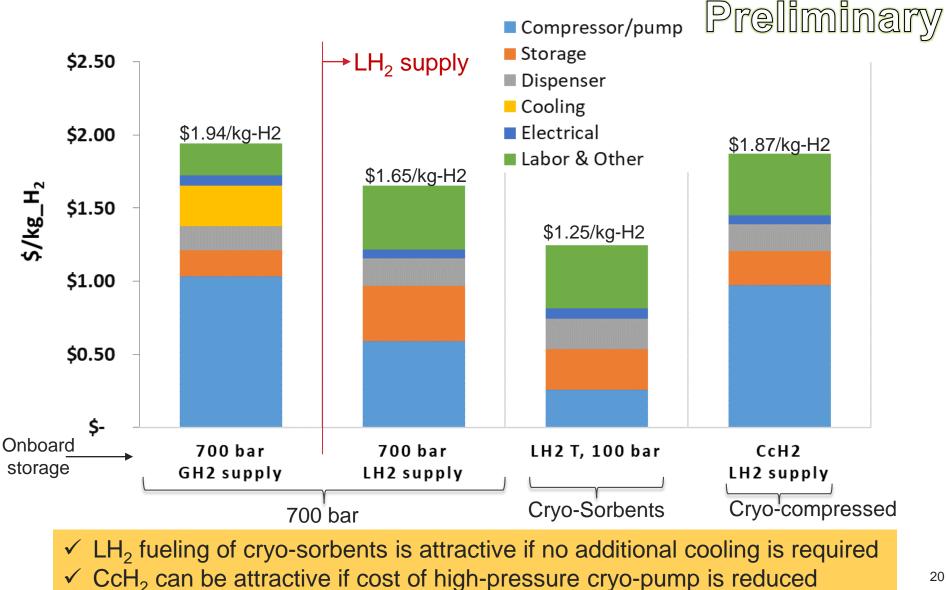
- LN₂ delivered to station in volume (~5000 gallons) at \$0.3/gallon (\$0.1/kg_{LN2})
- 11 kg (3.6 gallon) of LN₂ per kg of H₂ dispensed \rightarrow 55 kg (18 gallon) LN₂ per vehicle
- Daily LN_2 use = 8,800 kg (2900 gallons) of LN_2 for 800 kg_{H2} dispensed per day
- LN_2 tank (7250 gallons) cost (uninstalled) = \$178,000 (\$140,000 future mid volume)
- LN₂ pump capacity = 75 kg/min, 1 kW motor
- Pump cost (uninstalled) = \$15,000 (per dispenser, mid volume)
- HX cost is today low volume (uninstalled), mid volume @79%, installation factor = 1.35
- 30m VJ piping costs \$37,000 (mid volume production factor = 0.79), including 1.9 installation cost factor. Four VJ valves are \$10,000, installed.


Refueling cost with tube trailer gaseous deliveries – Accomplishment

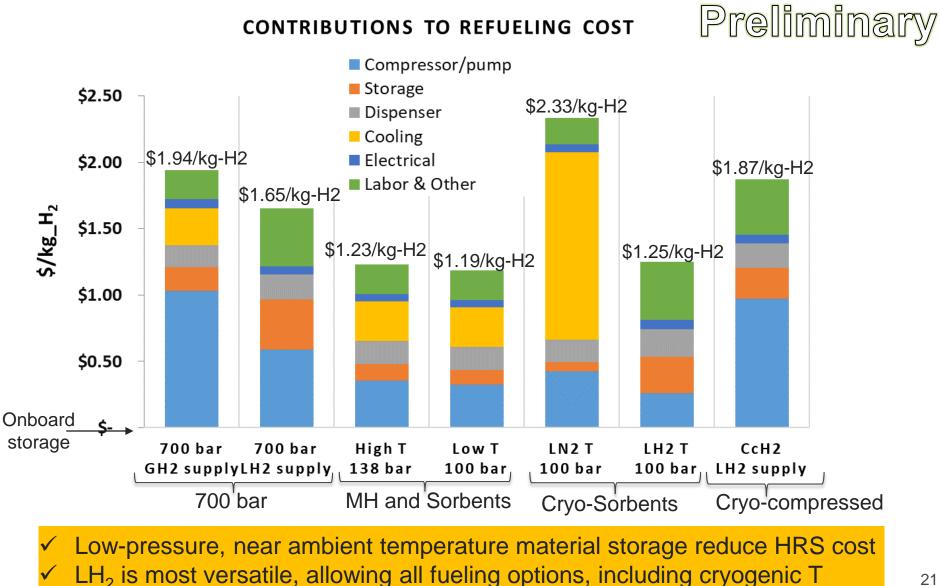
LH₂ Temperature Refueling

- 1. Low-Pressure, Cryo-Sorbents
- 2. Cryo-compressed (CcH₂)
- 3. 700 bar Gaseous

Example of low P, LH₂ temperature refueling: Cryosorbents – Accomplishment


- 5 kg fill in 3 minutes
- Bed pressure 5 bar \rightarrow 100 bar
- Sorbent bed temp. $300K \rightarrow 155K$
- Dispensed LH₂ provides cooling

✓ Similar configuration as cryo-compressed (CcH₂)
✓ Tanks of cryo-sorbents may require additional cooling



Refueling cost with liquid Hydrogen (LH₂) deliveries Accomplishment

CONTRIBUTIONS TO REFUELING COST

Summary of levelized HRS cost contribution for different dispensing P and T – Accomplishment

Summary – Accomplishment

- Evaluated impact of onboard hydrogen storage options on refueling cost
 - Metal Hydride (MH) \rightarrow 100 bar, near ambient temperature
 - Sorbents \rightarrow 100 bar, near ambient temperature
 - Cryo-sorbents \rightarrow 100 bar, 145K, and near LH₂ temperature
 - Cryo-compressed Hydrogen \rightarrow 350 bar, 35K
 - ✓ Compare to 700 bar refueling (both liquid and gaseous supply)
- MH and sorbents near ambient temperature provides the largest potential for refueling cost reduction
 - Cost reduction ~40%
 - Most of the cost reduction is attributed to low refueling pressure
- Cryo-sorbents using LN₂ shows increase in cost of refueling despite low refueling pressure
 - Most of the cost increase is attributed to LN₂ onsite cooling
 - Cost of delivered LN_2 adds \$1/kg_{H2}
- Liquid hydrogen is most versatile, allowing all fueling options
 especially those requiring low temperature

Collaborations and Acknowledgments

- Daryl Brown of Energy Technology Analysis supported the sorbents pathway analysis
- Mike Veenstra, Ford Motor Company, provided technical information and general guidance and support
- Jesse Adams (DOE) provided technical information and general guidance and support
- Terry Johnson of Sandia National Laboratory provided performance data for MH systems
- Kriston Brooks and Ewa Ronnebro of Pacific Northwest National Laboratory provided performance data for MH systems
- David Tamburello of Savannah River National Laboratory provided performance data for sorbent systems
- U.S.DRIVE Delivery and Storage Tech Teams

Future Work

- Expand system boundary to include delivery + refueling cost for consistent comparison
- Conduct energy and emissions analysis (life cycle)
- Review new pathways in HDSAM
 - Conduct independent model review by subject matter experts
 - Release updated HDSAM with new pathways
- Document data and analysis in peer-reviewed publication
- Conduct similar analysis for Medium- and heavy-duty vehicles

Project Summary

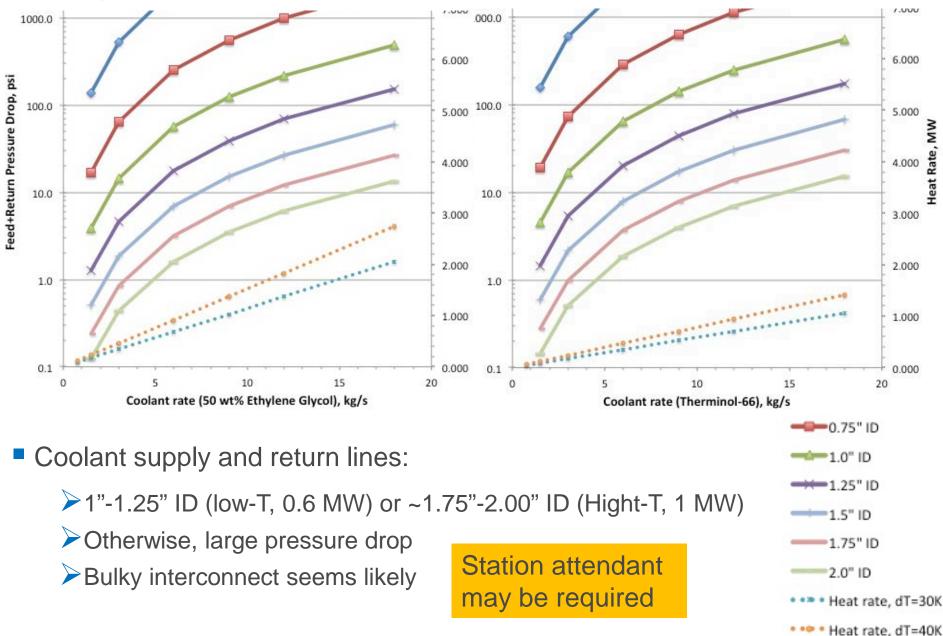
- Relevance: On-board hydrogen storage systems can have large impact on refueling cost of fuel cell vehicles
- Approach: Develop new delivery and refueling pathways in HDSAM for onboard systems
- Collaborations: Collaborated with consultants and experts from other national labs (ETA, LLNL) and sought data and guidance from experts (industries and across US DRIVE technical teams)
- Technical accomplishments and progress:
 - Evaluated impact of material storage (MH and sorbents) on refueling cost of fuel cell vehicles
 - Onboard material storage charged near ambient temperature provides the largest potential for refueling cost reduction compared to 700 bar refueling (~\$1/kg_{H2})
 - Cryo-sorbents show increase in cost of refueling when LN₂ is used for onsite cooling, while LH₂ charging of cryo-sorbents show much lower fueling cost
 - Liquid hydrogen is most versatile, allowing all fueling options, especially those requiring low temperature fueling
 - Implemented new material fueling pathways in HDSAM

Future Research:

- Expand system boundary to include delivery + refueling cost for consistent comparison
- Conduct energy and emissions analysis (life cycle)
- Review new pathways in HDSAM
- Conduct independent model review by subject matter experts
- Release updated HDSAM with new pathways
- Document data and analysis in peer-reviewed publication
- Conduct similar analysis for Medium- and heavy-duty vehicles

aelgowainy@anl.gov

Backup Slides


Acronyms

- AMR: Annual Merit Review
- ANL: Argonne National Laboratory
- CA: California
- CcH₂: Cryo-compressed
- CF: Carbon Fiber
- Cp: Specific heat at constant pressure
- DOE: Department of Energy
- ETA: Energy Technology Analysis
- FCEV: Fuel Cell Electric Vehicle
- FCTO: Fuel Cell Technologies Office
- FY: Fiscal Year
- GH₂: Gaseous Hydrogen
- GN₂: Gaseous Nitrogen
- GREET: Greenhouse gases, Regulated Emissions, and Energy use in Transportation
- H: Enthalpy
- ∆h_{ads}: Enthalpy of Adsorption
- H₂: Hydrogen
- H2A: Hydrogen Analysis
- HDSAM: Hydrogen Delivery Scenario Analysis Model
- HP: Horse Power
- HRS: Hydrogen Refueling Station
- HX: Heat Exchanger

- ID: Inner Diameter
- LxW: Length x Width
- LH₂: Liquid Hydrogen
- LN₂: Liquid Nitrogen
- mº: Mass Flow Rate
- MH: Metal Hydride
- MLVI: Multi-Layer Vacuum Insulation
- MOF: Metal Organic Framework
- MSM: Macro-System Model
- P: Pressure
- RD&D: Research, Development, and Demonstration
- S: Entropy
- T: Temperature
- TEA: Techno-Economic Analysis
- ΔT: temperature difference
- US: United States
- US eq. gal: U.S. equivalent gallon
- US DRIVE: U.S. Driving Research and Innovation for Vehicle efficiency and Energy sustainability
- VACD: Variable Area Control Device
- WTW: Well-to-Wheels

Low-P, Near Ambient T: Prior Results and Context

Low-P, Near Ambient T: Discussion – Accomplishment

- Higher-enthalpy materials have larger on-board parasitic losses at station:
 - Required much higher coolant rates, larger pressure drops
 - \blacktriangleright But ΔT to transfer heat to ambient was more favorable
- This project did not evaluate change in vehicle cost, material storage vs. 700-bar

- ACHX will mix coolant between vehicles
 - Did not consider costs for filtration / purification
 - Opportunity to reduce ACHX cost (scale)

Low P, LN₂ temperature refueling case – Approach

Objective: Determine impact of low P, LN₂ temperature refueling on levelized refueling cost of cryo-sorbents

Compare to refueling baseline 700 bar onboard storage

- Approach:
 - Define refueling conditions (e.g., P, T) for sorbent charging scenarios
 - > Determine practical operation constraints
 - Determine and size major items of refueling equipment (e.g., LN₂, HX)
 - Acquire cost of components
 - Implement in HDSAM
 - Calculate and compare levelized refueling cost for baseline and sorbent storage scenarios on a consistent basis

Developed GH₂ and LH₂ Pathways for Fueling Sorbent Storage Onboard Vehicle – Accomplishment

- Developed new sorbent tab in HDSAM.
- Fueling onboard sorbent storage with GH₂ requires an additional system for cooling sorbent bed and hydrogen gas.
- Delivered LN₂ used for cooling GH₂ supply.
- Onboard sorbent storage may be directly fueled with LH₂. Evaporating LH₂ is assumed to simultaneously cool sorbent bed/tank and accommodates heat of adsorption.

Cost Estimating Data Sources – Accomplishment

- Acquired vendor estimates for hydrogen cooling heat exchangers.
- Acquired vendor estimates for LN₂ delivered in bulk by truck.
- Used same \$/m³ for LN₂ storage vessel as for existing LH₂ storage vessel cost model.
- LN₂ pump cost developed from vendor estimates.
- Vendor data used for vacuum-jacketed (VJ) piping costs.

