2019 DOE Hydrogen and Fuel Cells Program Annual Merit Review





#### AMGAD ELGOWAINY (PI), MARIANNE MINTZ , JEONGWOO HAN (currently with Exxon), UISUNG LEE, THOMAS STEPHENS, PINGPING SUN, ANANT VYAS, YAN ZHOU, LEAH TALABER, STEPHEN FOLGA, MICHAEL MCLAMOR

**Argonne National Laboratory** 

April 30, 2019

SA172

This presentation does not contain any proprietary, confidential, or otherwise restricted information

# **Overview**

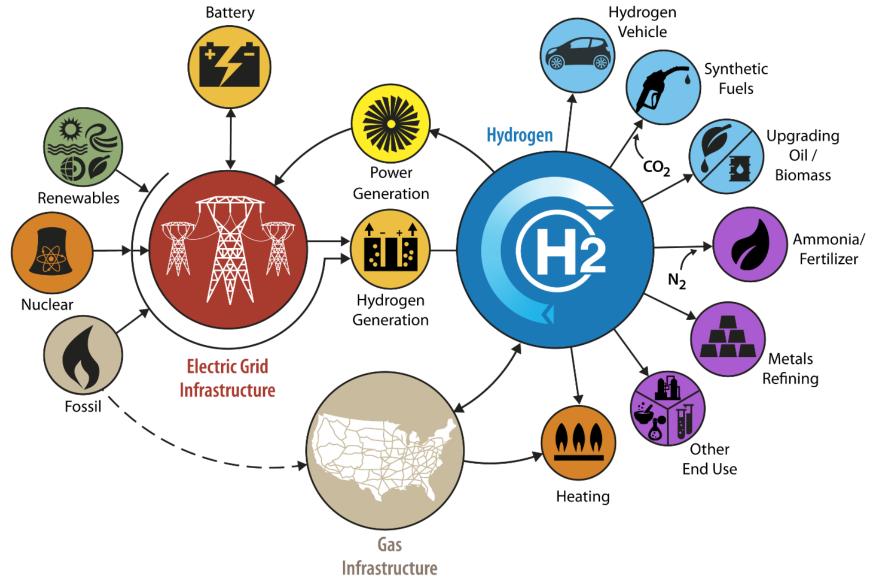
### Timeline

- Start: October 2018
- End: Determined by DOE
- % complete (FY19): 80%

#### Budget

• Funding for FY19: \$200K

#### **Barriers to Address**

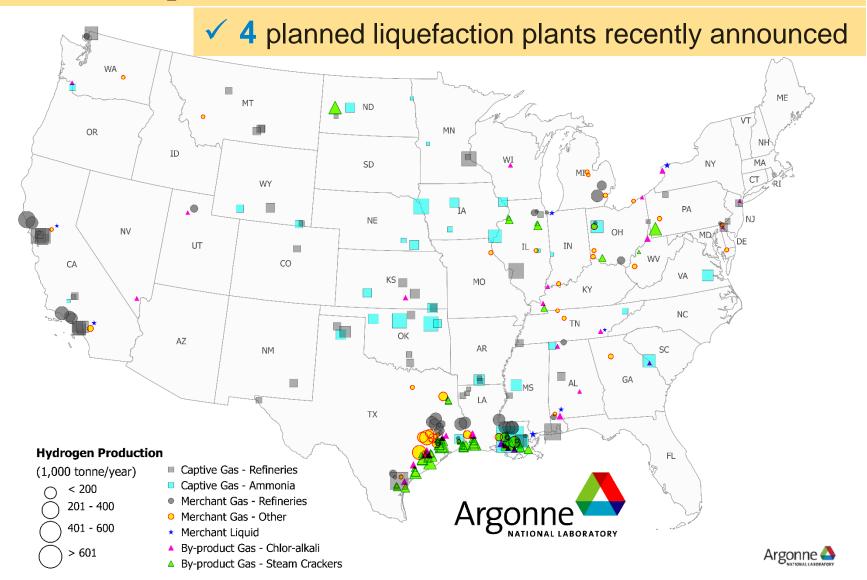

- A: Future Market Behavior
  - Potential market for low value energy and potential hydrogen markets beyond transportation
- D: Insufficient Suite of Models & Tools
- E: Unplanned Studies and Analysis →H2@Scale is a new concept and requires analysis of its potential impacts

### **Partners/Collaborators**

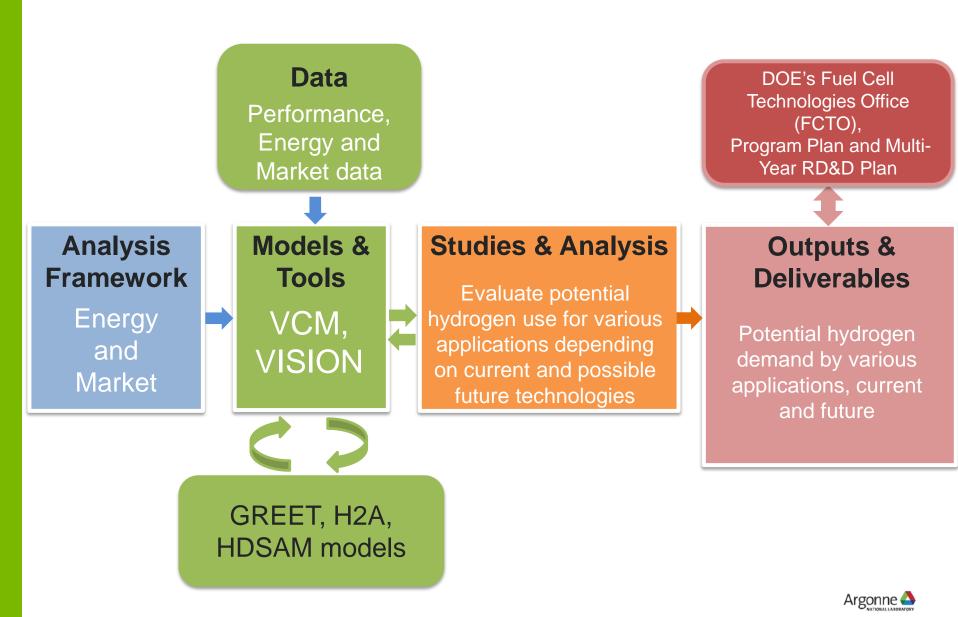
- NREL, INL, PNNL, SNL, LLNL, LBNL
- DOE NE Office
- Industry partners (utilities, energy companies and OEMs)



#### H2@SCALE ENERGY SYSTEM\* – Relevance/Impact



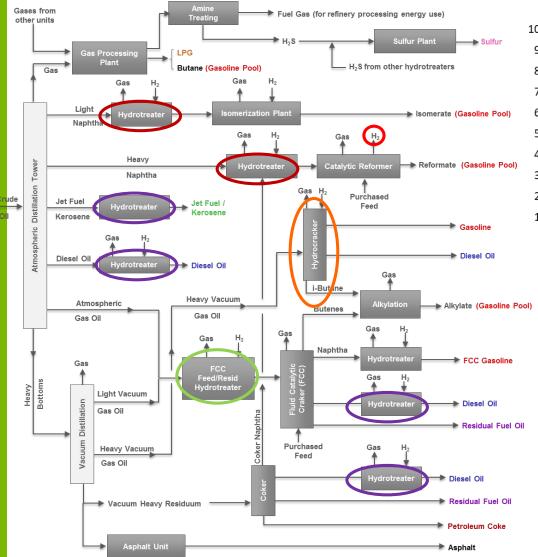

\*Illustrative examples, not comprehensive

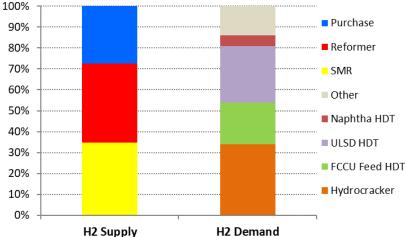



#### TODAY, MORE THAN 10M METRIC TONS OF HYDROGEN ARE PRODUCED IN THE U.S. ANNUALLY – Relevance/Impact

#### **1600 mi.** of H<sub>2</sub> pipeline; **10** Liquefaction plants in North America




#### COLLECT PERFORMANCE, ENERGY, MARKET DATA FOR CURRENT AND POTENTIAL FUTURE MARKETS – Approach



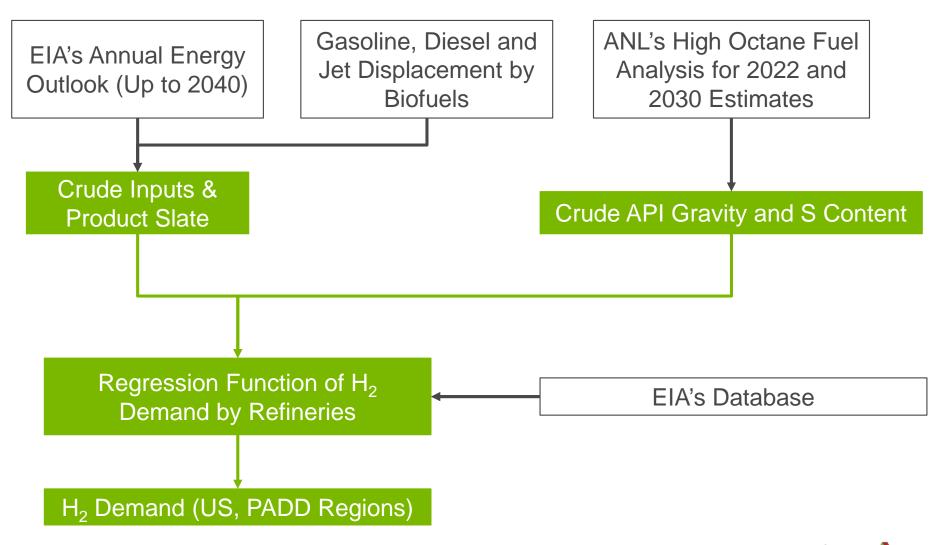

### POTENTIAL HYDROGEN DEMAND BY REFINERIES




#### HYDROGEN CONSUMERS IN PETROLEUM REFINING – Relevance/Impact

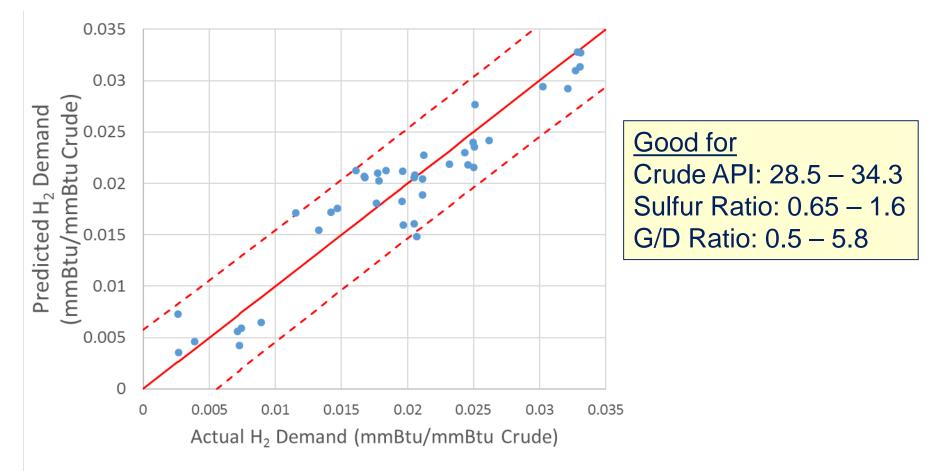





#### **Major consumers**

- Hydrocracker → Diesel from Heavy Crude
- ULSD Hydrotreater → Diesel
- FCCU Feed Hydrotreater → Heavy Crude and S removal
- Hydrotreater  $\rightarrow$  S removal

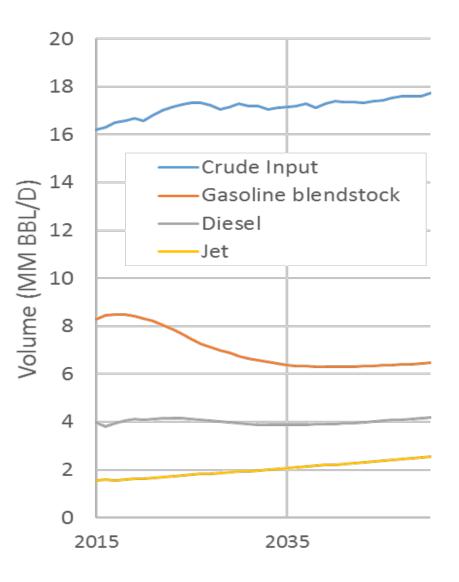



Argonne 🗠

#### HYDROGEN DEMAND ASSESSMENT FOR PETROLEUM REFINING – Approach

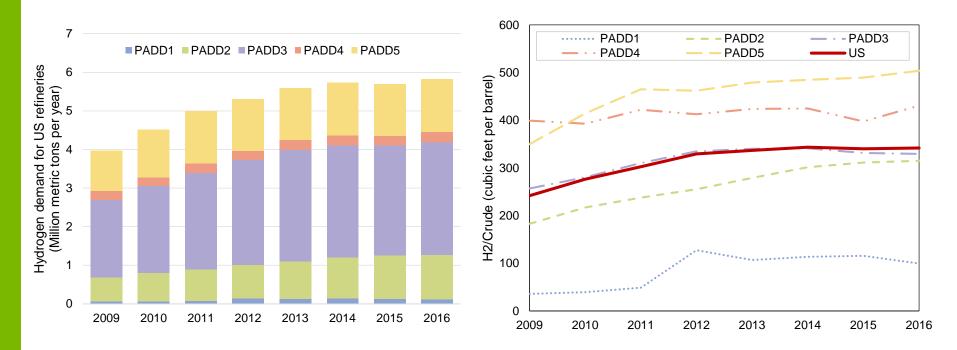


#### DEVELOPMENT OF REGRESSION FUNCTION OF H<sub>2</sub> DEMAND BY REFINERIES USING EIA'S DATABASE – Accomplishment


H<sub>2</sub> (mmBtu/mmBtu Crude) = 0.059-0.00175 x (Crude API)+0.02218 x (Sulfur Ratio)-0.00139 x (G/D Ratio)-0.59416 x (LPG/Total)






#### BACKGROUND DATA FOR ESTIMATING H<sub>2</sub> CONSUMPTION RATE – Accomplishment

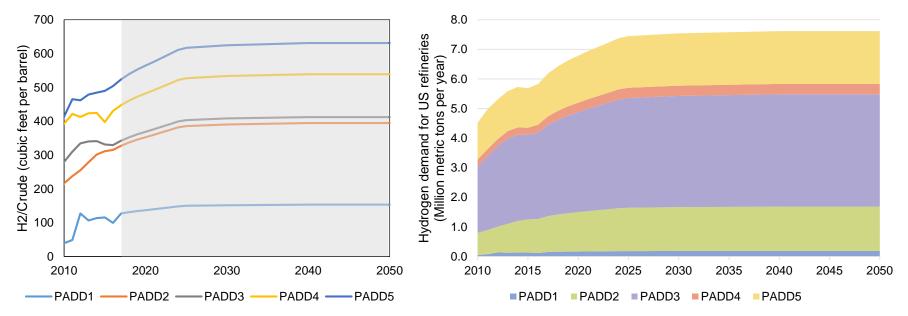
- EIA Database
  - Crude Input
  - Product Slate → G/D Ratio
- ANL's High Octane Fuel Analysis for 2022 and 2030 Estimates
  - Crude API
  - Crude S Contents



#### RECENTLY, H<sub>2</sub> DEMAND FOR US REFINERIES HAS INCREASED SIGNIFICANTLY – Accomplishment

- H<sub>2</sub> demand has been increased due to increased diesel demand and more stringent regulations.
- H<sub>2</sub>/Crude ratio shows regional variation; H<sub>2</sub>/Crude increases over time.




Source: EIA

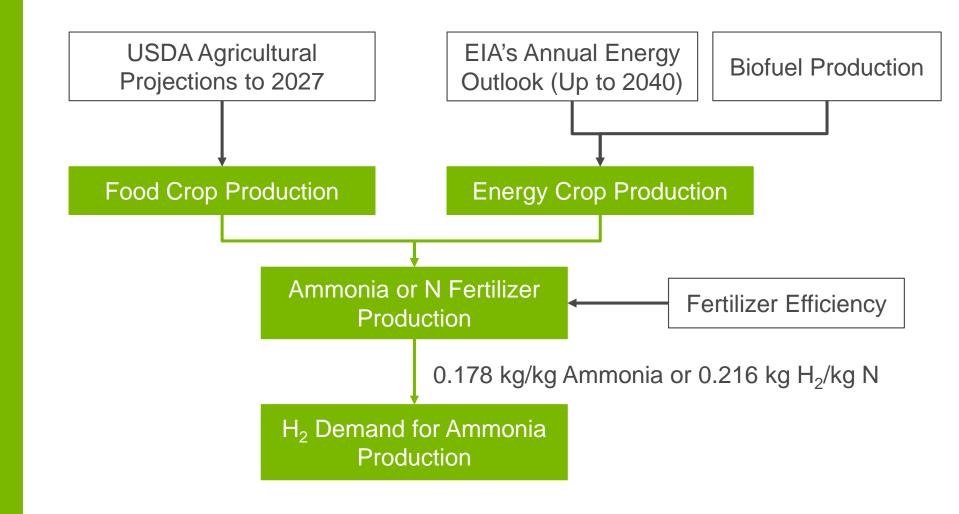


#### ESTIMATION OF FUTURE H<sub>2</sub> DEMAND FOR US REFINERIES - Accomplishment Preliminary

- H<sub>2</sub>/Crude will increase through 2030
- Crude capacity would increase 9% from 2015 to 2021 (EIA AEO)

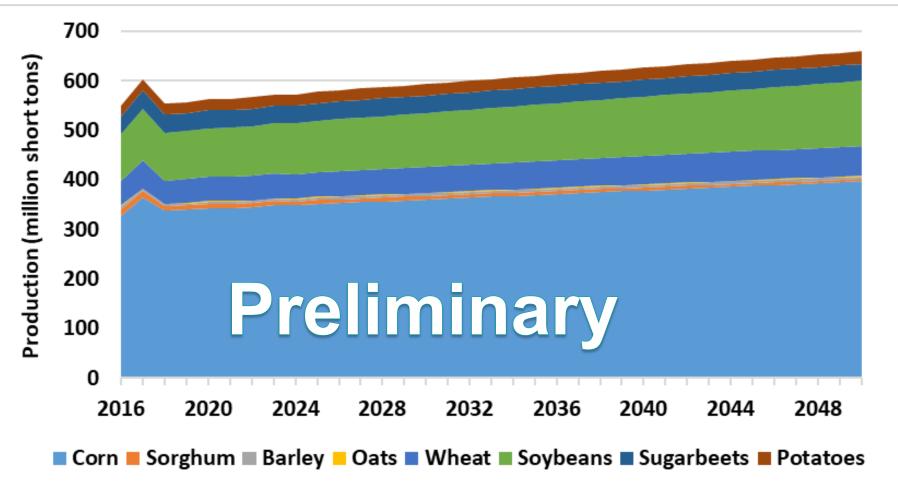
|                            | PADD1 | PADD2 | PADD3 | PADD4 | PADD5 | US  |
|----------------------------|-------|-------|-------|-------|-------|-----|
| $H_2$ demand in 2030 (MMT) | 0.2   | 1.5   | 3.8   | 0.4   | 1.8   | 7.5 |




- Generally increasing H<sub>2</sub> consumption by refineries
  - Increasing H<sub>2</sub> consumption rate due to heavier and more sour crude
  - Increasing D/G ratio
  - Increasing crude inputs



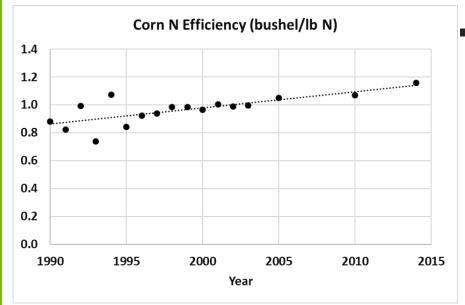
### POTENTIAL HYDROGEN DEMAND FOR AMMONIA PRODUCTION

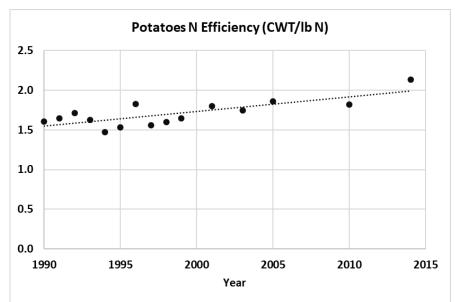



#### HYDROGEN DEMAND ASSESSMENT FOR AMMONIA PRODUCTION – Accomplishment






# AGRICULTURE PRODUCTS PRODUCTION – Accomplishment




- Dominated by corn, wheat and soybean
- USDA projection up to 2027
- Extended average rates of 2020 to 2027 through 2050

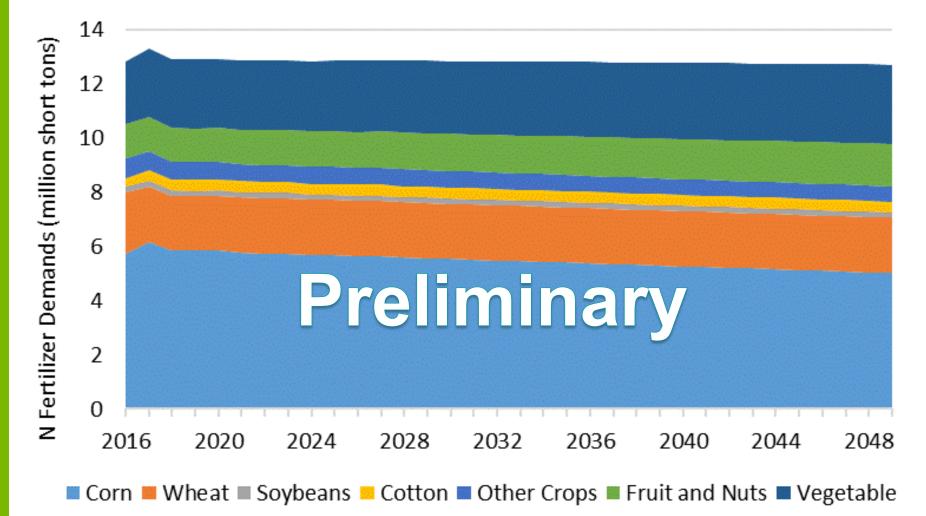
15

#### N FERTILIZER EFFICIENCY – Accomplishment





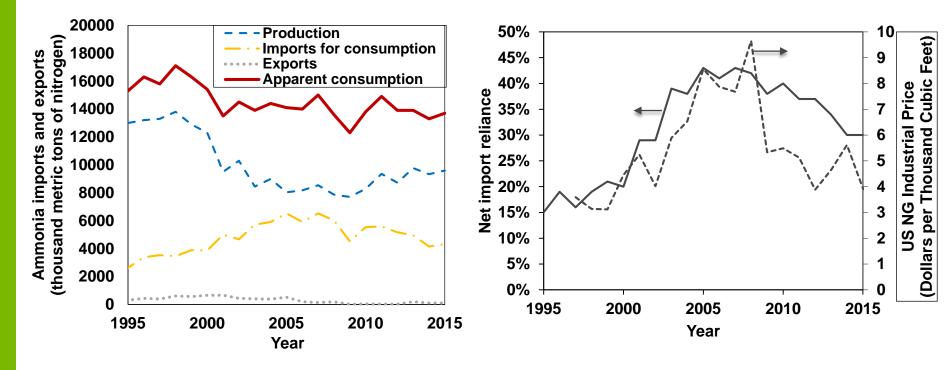
#### Based on USDA NASS Database


- Corn, soybeans, wheat, potatoes have enough samples for regression
- Soybeans and wheat does not show strong trends over year

| Crop                                   | Unit           | N Efficiency |  |  |
|----------------------------------------|----------------|--------------|--|--|
| Sorghum <sup>1</sup>                   | bushel/lb N    | 0.69         |  |  |
| Barley <sup>1</sup>                    | bushel/lb N    | 0.99         |  |  |
| Oats <sup>1</sup>                      | bushel/lb N    | 0.81         |  |  |
| Wheat <sup>1</sup>                     | bushel/lb N    | 0.63         |  |  |
| Soybeans <sup>1</sup>                  | bushel/lb N    | 9.27         |  |  |
| Rice <sup>1</sup>                      | CWT/lb N       | 0.45         |  |  |
| Cotton <sup>1</sup>                    | bale/lb N      | 0.02         |  |  |
| Sugarbeets <sup>2</sup>                | short ton/lb N | 0.02         |  |  |
| <sup>1</sup> Average from 2010 to 2015 |                |              |  |  |

<sup>2</sup> Only one data point

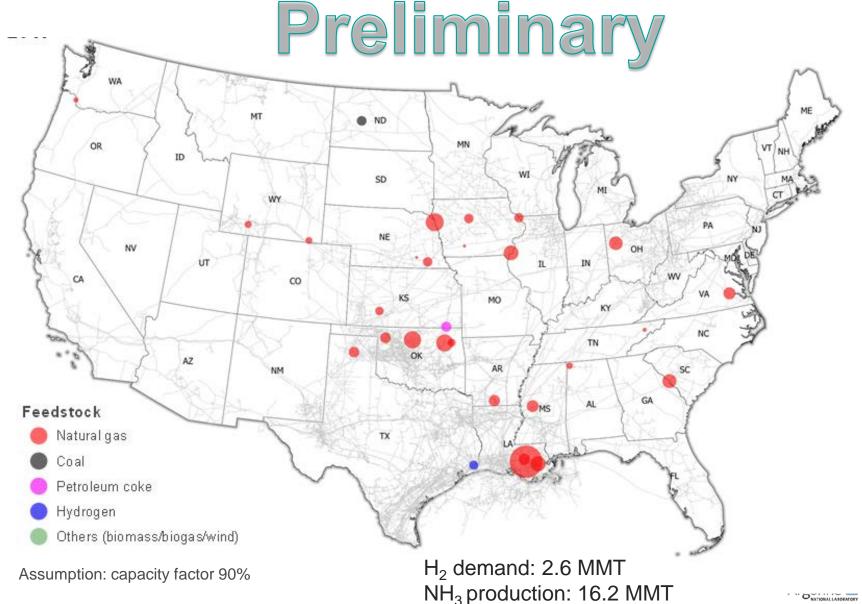



#### NEAR STEADY DEMAND OF N FERTILIZER – Accomplishment



Mainly for corn, wheat, fruit and nuts, and others

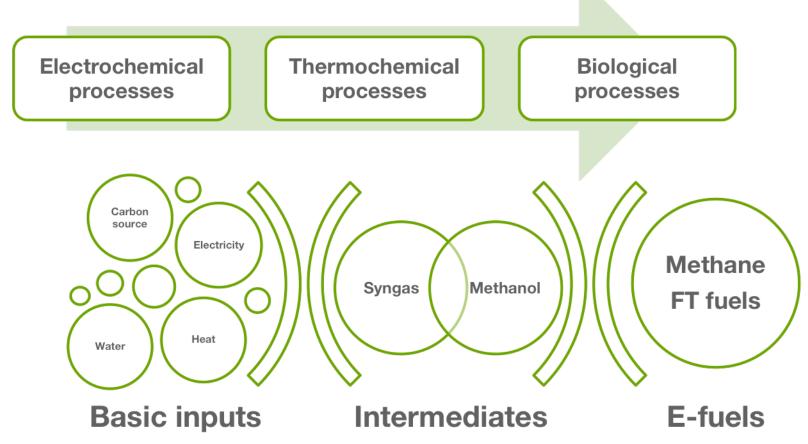
#### US DOMESTIC AMMONIA PRODUCTION AND IMPORTS VARIED OVER TIME WHILE CONSUMPTION REMAINS STABLE – Accomplishment


 If the amount of current imported ammonia is produced in the US, domestic production can be increased by 43% without increment in ammonia demand.



Data: USGS nitrogen (fixed)-ammonia (USGS 2016)

Data: USGS 2016; EIA 2017


#### U.S. AMMONIA PRODUCTION 2017 – Accomplishment

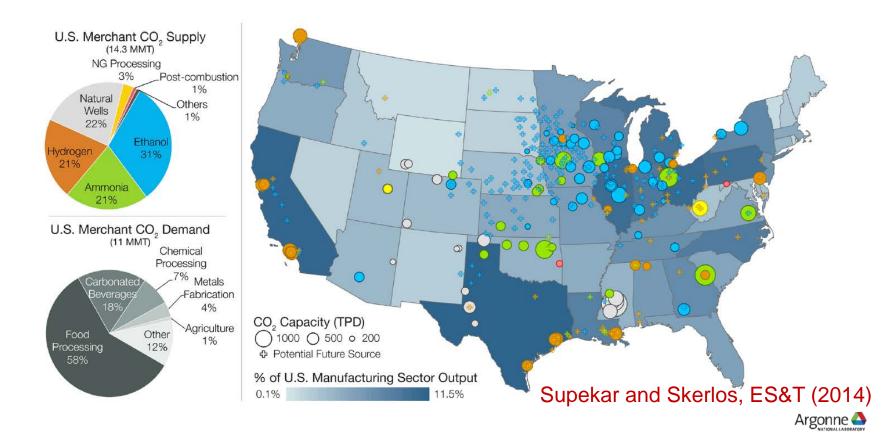


# E-FUEL (SYNFUEL) PRODUCTION $(H_2 + CO_2 \rightarrow LIQUID HC)$



#### E-FUELS PATHWAYS – Relevance




#### WHAT ARE ELECTROFUELS?

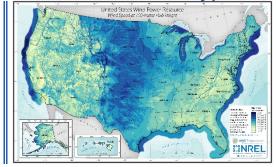
Electrofuels or "e-fuels" encompass **energy carriers** and their **intermediates** synthesized primarily using a carbon source and electricity.



#### DEMAND FOR E-FUEL PRODUCTION → CO<sub>2</sub> SOURCES – Accomplishment

- 100 million MT of concentrated CO<sub>2</sub> produced annually (out of total 3 GT CO<sub>2</sub>)
  - 44 million MT from ethanol plants
    - $\checkmark$  Current market supply capacity of 14 MMT, and demand of 11 MMT
  - Remainder from hydrogen SMR (refineries) and ammonia plants

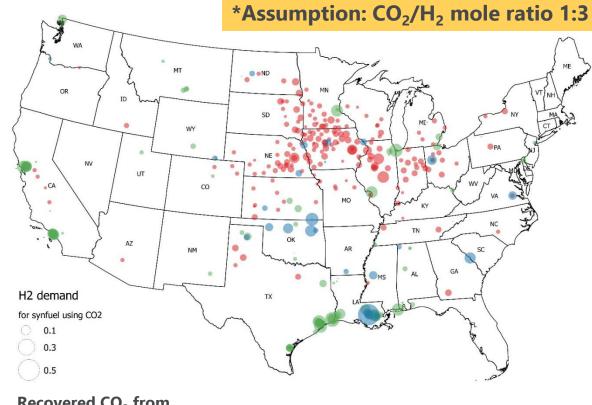



#### TOTAL E-FUEL H<sub>2</sub> DEMAND BY CO<sub>2</sub> SOURCE LOCATION COULD ADD UP TO 14 MMT PER YEAR – Accomplishment

#### **Installed nuclear plants**

U.S. Operating Commercial Nuclear Power Reactors




#### Wind electricity potential



#### Solar electricity potential



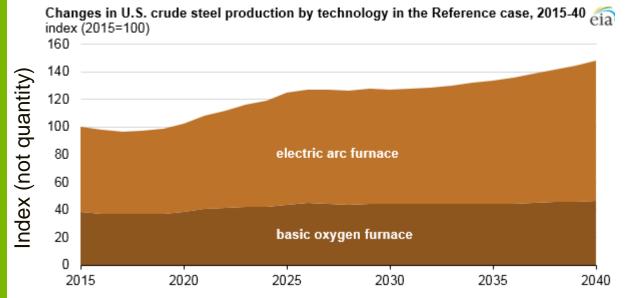
Argonne



**Recovered CO<sub>2</sub> from** 

Ethanol plants

H<sub>2</sub> plants


Ammonia plants

Preliminary

### POTENTIAL HYDROGEN DEMAND FOR STEEL REFINING



#### STEEL MAKING AND POTENTIAL HYDROGEN DEMAND – Accomplishment



Projected growth from 80 to 120 MMT (50%) by 2040

- 100 kg of hydrogen is estimated to produce 1 MT of hot iron with direct reduction iron (DRI) technology
  - > 1 ton of  $H_2$  can replace 5 ton of coke
  - If all imported steel (35 MMT steel) is replaced with U.S. production via DRI, demand would be 3.5 MMT H<sub>2</sub>
  - If all steel is produced via DRI in U.S. in 2040 (120 MMT steel), demand would be 12 MMT H<sub>2</sub>
     ✓ In near-term, DRI in a mix of 30% H<sub>2</sub> by energy is feasible (Midrex)
  - H<sub>2</sub> price of ~\$1.50 (2017 dollars)/kg would generate positive NPV for DRI<sup>1</sup>

<sup>1.</sup> Sohn, H.Y., and Y. Mohassab, 2016. "Development of a Novel Flash Ironmaking Technology with Greatly Reduced Energy Consumption and CO<sub>2</sub> Emissions," *Journal of Sustainable Metallurgy*, Vol. 2(3):216–227. DOI 10.1007/s40831-016-0054-8.



#### POTENTIAL HYDROGEN DEMAND FOR OTHER APPLICATIONS – Accomplishment

| Application                       | Target H <sub>2</sub> Price<br>[\$/kg] | Potential H <sub>2</sub><br>Demand [MMT] | Notes                                       |  |
|-----------------------------------|----------------------------------------|------------------------------------------|---------------------------------------------|--|
| Light-Duty FCEV (cars)            | 5                                      | 2.5                                      | Vehicle choice model (VCM)                  |  |
|                                   | 2.7                                    | 3.3                                      | Vehicle choice model                        |  |
| Light-Duty FCEV (trucks)          | 5 4                                    |                                          | Vehicle choice model                        |  |
|                                   | 2.7                                    | 6.2                                      | Vehicle choice model                        |  |
| Medium-Duty FCEV                  | 5                                      | 1                                        | Zero-emissions mandate                      |  |
| Heavy-Duty FCEV                   | 5                                      | 0.5                                      | Zero-emissions mandate                      |  |
| Petroleum Refining                | inelastic demand                       | 7.5                                      | No substitute for $H_2$ in refining process |  |
| Biofuels                          | inelastic demand                       | 4                                        | Renewable Fuel Standard                     |  |
| NH <sub>3</sub>                   | inelastic demand                       | 2.6                                      | Demand for current production of $NH_3$     |  |
| 5                                 | 2                                      | 3.6                                      | Competitive with SMR H <sub>2</sub>         |  |
| Synthetic MeOH                    | 2                                      | 3.8                                      | Competitive with SMR H <sub>2</sub>         |  |
| Synthetic FT Diesel               | 1.5                                    | 6                                        | To compete with petroleum diesel            |  |
| Injection to NG<br>Infrastructure | 0.8                                    | 10                                       | Competitive with NG HHV                     |  |
| Iron Reduction and                | 1.7                                    | 3.5                                      | Techno-economic analysis of DRI             |  |
| Steelmaking                       | 0.8                                    | 12                                       | Competitive with NG HHV                     |  |

✓ We note that the assessed scenarios for potential  $H_2$  demand by various applications may be exclusive of one another (i.e., the  $H_2$  demand by different scenarios may not be additive)

#### SUMMARY – Accomplishment

- Evaluated current and potential future annual hydrogen demand for various applications
  - Petroleum refining (7.5 MMT)
  - Ammonia production (3.6 MMT)
  - -e-fuels (14 MMT)
  - Steel refining (12 MMT)
- Additional potential H<sub>2</sub> market demands were evaluated
  - Biofuels production
  - FCEVs (LDV and M/HDV)
  - Injection into NG pipelines
- Documented all data sources, modeling approach and analysis in a report
  - Report has been peer reviewed
  - Awaiting clearance for public release



# **Collaborations and Acknowledgments**

- Mark Ruth, Paige Jadun and Bryan Pivovar: NREL
- Richard Boardman: INL
- Jamie Holliday: PNNL
- Troy Hawkins, Krishna Reddi, Sarang Supekar, Ted Krause and John Kopasz: ANL
- Elizabeth Connelly: DOE
- George Parks: FuelScience



# **Future Work**

- Develop LCA for environmental analysis of new pathways
  - e.g., e-fuels and steel refining
- Conduct regional analysis considering proximity of supply and demand
  - Delivered H<sub>2</sub> vs. onsite production
  - Delivery mode / bulk storage requirement
    - As a function of volume, schedule, and pressure requirement
- Consider potential other markets (e.g., hythane for NG power generators)
- Consider non-physical materials for delivering and storing hydrogen (e.g., chemical carriers)
- Publish H2@Scale Demand Report



# **Project Summary**

- Relevance: hydrogen from clean energy sources can enable renewable energy penetration and serve energy sectors beyond transportation
- Approach: evaluate potential growth in hydrogen demand for existing and emerging applications
- Collaborations: H2@Scale is a multi-national laboratory effort with collaboration across DOE national lab complex

#### Technical accomplishments and progress:

- Evaluated current and potential future hydrogen market demand for various applications
  - Petroleum refining, ammonia production, e-fuels, and steel refining
- Additional potential H<sub>2</sub> market demands were evaluated
  - Biofuels production, FCEVs (LDV and M/HDV), Injection into NG pipelines
- Documented all data sources, modeling approach and analysis in a report
  - Report was peer reviewed
  - Awaiting clearance for public release

#### • Future Research:

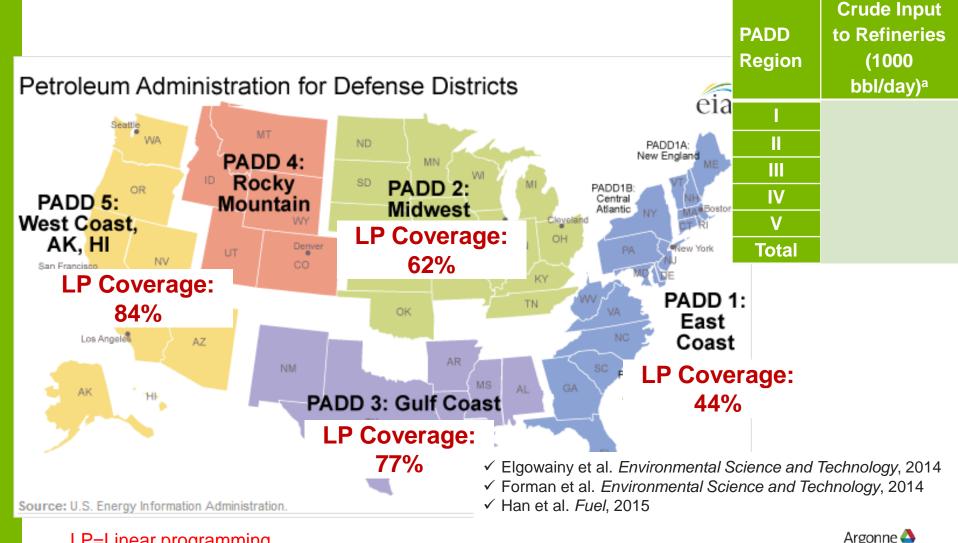
- Develop LCA for environmental analysis of new pathways
- Conduct regional analysis considering proximity of supply and demand
- Consider potential other markets (e.g., hythane for NG power generators)
- Consider non-physical materials for delivering and storing hydrogen (e.g., chemical carriers)
- Publish H2@Scale Demand report

aelgowainy@anl.gov

# **Backup Slides**



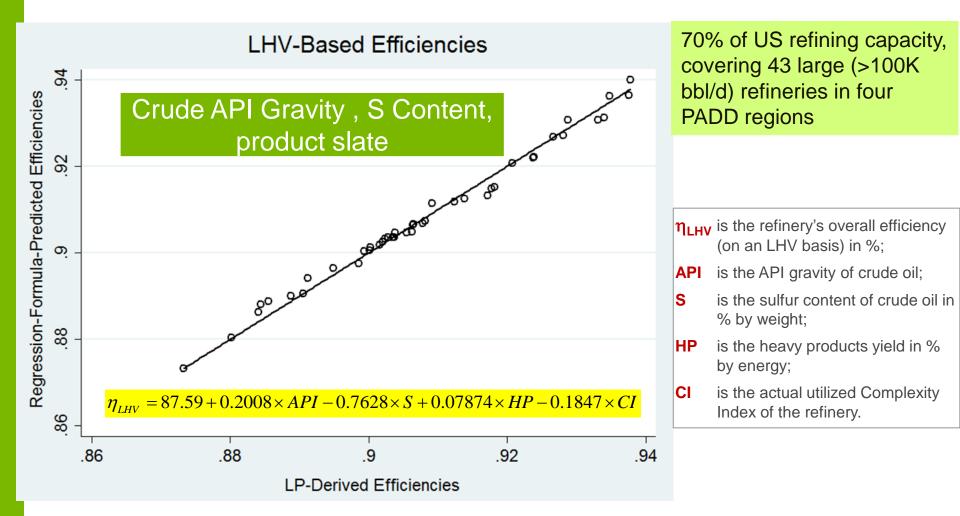
# Acronyms


- AEO: Annual Energy Outlook
- AMR: Annual Merit Review
- API: American Petroleum Institute
- ANL: Argonne National Laboratory
- BBL: Barrel
- CI: Complexity Index
- CWT: hundredweight (=100 lb)
- D: Diesel
- DME: Di-Methyl Ether
- DOE: Department of Energy
- DRI: Direct Iron Reduction
- EIA: Energy Information Administration
- FCCU: Fluid Catalytic Cracker Unit
- FCEV: Fuel Cell Electric Vehicle
- FCTO: Fuel Cell Technologies Office
- FT: Fischer-Tropsch
- FY: Fiscal Year
- G/D: Gasoline/Diesel ratio
- GH<sub>2</sub>: Gaseous Hydrogen
- GREET: Greenhouse gases, Regulated Emissions, and Energy use in Transportation
- GT: Giga Ton
- H<sub>2</sub>: Hydrogen
- H2A: Hydrogen Analysis
- HC: Hydrocarbon
- HDSAM: Hydrogen Delivery Scenario Analysis Model
- HDT: Hydrotreater
- HHV: Higher Heating Value
- HP: Heavy Products

- INL: Idaho National Laboratory
- LBNL: Lawrence Berkeley National Lab.
- LCA: Life Cycle Analysis
- LDV: Light Duty Vehicle
- LHV: Lower Heating Value
- LLNL: Lawrence Livermore National Lab.
- LP: Linear Programming
- LPG: Liquefied Petroleum Gas
- M/HDV: Mediun- and Heavy-Duty Vehicle
- MeOH: Methanol
- MT: Metric Ton
- MMT: Million Metric Ton
- N: Nitrogen
- NASS: National Agricultural Statistics Service
- NE: Nuclear Energy
- NG: Natural Gas
- NH<sub>3</sub>: Ammonia
- NPV: Net Present Value
- NREL: National Renewable Energy Lab.
- PADD: Petroleum Administration for Defense Districts
- PNNL: Pacific Northwest National Laboratory
- RD&D: Research, Development, and Demonstration
- S: Sulfur
- SMR: Steam Methane Reformer
- SNL: Sandia National Laboratory
- ULSD: Ultra Low Sulfur Diesel
- U.S.: United States
- USDA: United States Department of Agriculture
- VCM: Vehicle Choice Model
- η: Efficiency

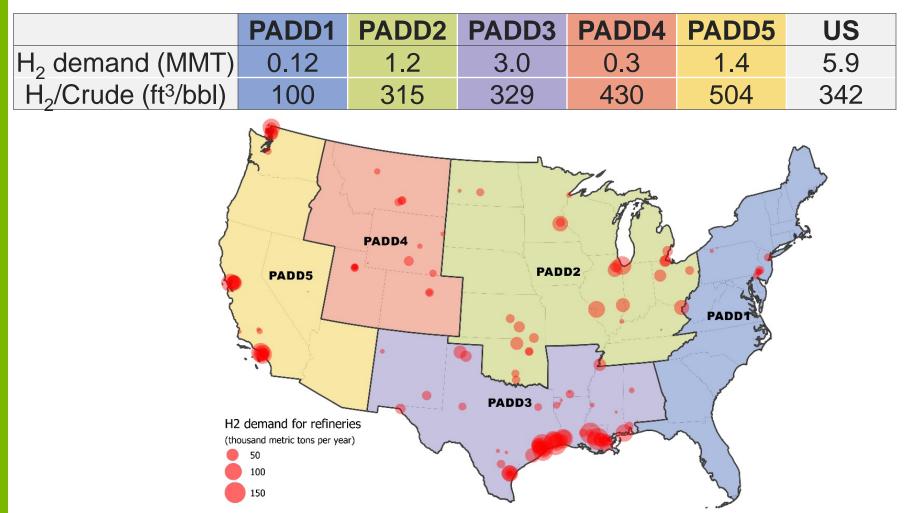


#### ANL STUDY COVERED 70% OF U.S. REFINING CAPACITY -Approach


LP modeling of 43 large (>100k bbl/d) refineries in four PADD regions



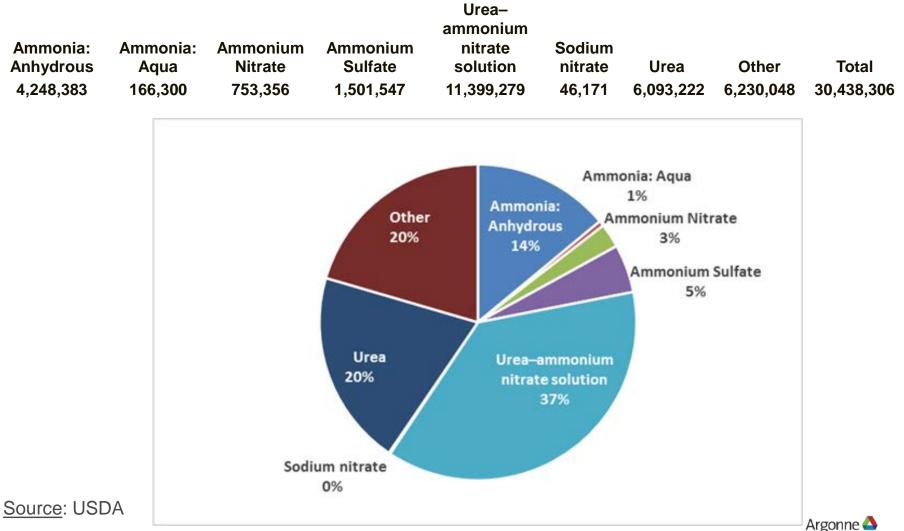
LP=Linear programming


#### CORRELATED REFINERY OVERALL EFFICIENCY WITH KEY REFINERY PARAMETERS – Relevance/Impact

Efficiency=f(API, sulfur%, heavy product yield, refinery complexity index)





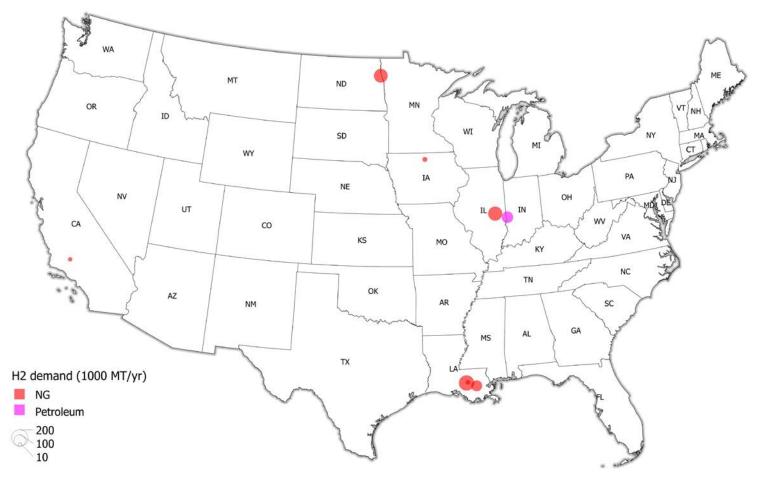

#### FACILITY-LEVEL H<sub>2</sub> DEMAND FOR US REFINERIES (2017) – Accomplishment



 Estimated based on facilities' crude distillation capacity and PADD H<sub>2</sub>/crude ratios

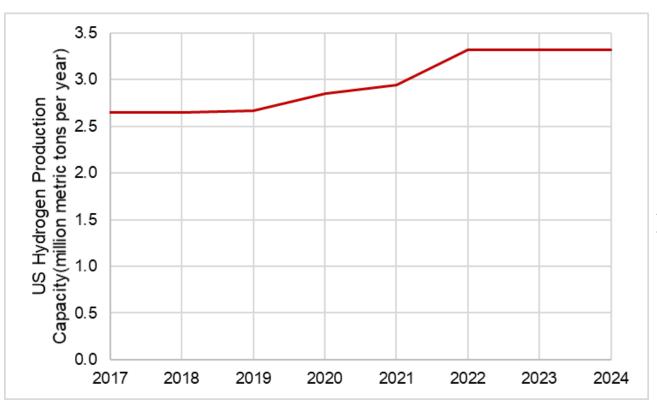
#### U.S. CONSUMPTION OF SELECTED NITROGEN MATERIALS (SHORT TON) – Relevance

Ammonia production in various forms




#### U.S. IMPORTS AND EXPORTS OF SELECTED N FERTILIZERS – Relevance

|                                | 2012                  |                       |                        |
|--------------------------------|-----------------------|-----------------------|------------------------|
|                                | Export<br>(short ton) | Import (short<br>ton) | Net Import (short ton) |
| Ammonium Nitrate (Solid)       | 400,000               | 900,000               | 500,000                |
| Urea (Solid)                   | 400,000               | 7,700,000             | 7,300,000              |
| Urea-ammonium nitrate solution | 160,000               | 3,300,000             | 3,140,000              |
| Ammonium Sulfate               | 1,400,000             | 300,000               | -1,100,000             |
| Anhydrous Ammonia              | 40,000                | 6,900,000             | 6,860,000              |
| Aqua Ammonia                   | 7,000                 | 97,000                | 90,000                 |
| Calcium Nitrate                | 0                     | 43,000                | 43,000                 |
| Diammonium Phosphate (DAP)     | 4,000,000             | 100,000               | -3,900,000             |
| Monammonium Phosphate (MAP)    | 2,700,000             | 600,000               | -2,100,000             |
| Other Nitrogen Fertilizers     | 30,000                | 460,000               | 430,000                |
| Potassium Nitrate              | 17,000                | 175,000               | 158,000                |
| Potassium-Sodium Nitrate       | 0                     | 600                   | 600                    |
| Sodium Nitrate                 | 4,000                 | 164,000               | 160,000                |
| Total                          | ~9,000,000            | ~21,000,000           | ~12,000,000            |




### "POSSIBLE" INCREASE IN U.S. AMMONIA PRODUCTION CAPACITY 2017-2022 – Accomplishment



#### AMMONIA PRODUCTION HYDROGEN DEMAND: KEY FINDINGS – Accomplishment

- Replacing imports with domestic would mean a 40% increase in production (while U.S. consumption could remain constant).
- Possible/likely increase in U.S. ammonia production based on planned capacity expansion at existing & new facilities



Ammonia production capacity data: AmmoniaIndustry.com (as of Nov. 2018) (only possible/likely plans are included)



#### MAJOR CARBON AND ELECTRICITY SOURCES TO CONSIDER – Relevance

| Carbon Sources                                                                                                                                                      | Electricity Sources |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|
| High purity sources of CO <sub>2</sub>                                                                                                                              | Wind                |  |  |
| <ul> <li>Ethanol plants</li> <li>Refineries</li> <li>Ammonia plants</li> <li>Cement plants</li> <li>Iron &amp; steel plants</li> </ul>                              | Solar               |  |  |
| Other sources of CO <sub>2</sub> /CO                                                                                                                                | Nuclear             |  |  |
| <ul> <li>Natural gas combined cycle power plants</li> <li>Biomass power/gasification plants</li> <li>Coal power/gasification plants</li> <li>Ambient air</li> </ul> | NG combined cycle   |  |  |
|                                                                                                                                                                     | Argonne             |  |  |

#### DEMAND FOR E-FUEL PRODUCTION – H<sub>2</sub> DEMAND – Accomplishment

| Table 2 — Efficiency of the synthesis processes. |                                 |                          |                  |      |  |
|--------------------------------------------------|---------------------------------|--------------------------|------------------|------|--|
|                                                  | H <sub>2</sub> /P (molar ratio) | LHV <sub>P</sub> [MJ/kg] | x <sub>lhv</sub> | f    |  |
| Methanol <sup>b</sup>                            | 3                               | 20.1                     | 0.886            | 0.90 |  |
| FT diesel <sup>a</sup>                           | 3                               | 43.2                     | 0.834            | 0.83 |  |
| FT syncrude <sup>a</sup>                         | 3                               | 43.2                     | 0.834            | 0.90 |  |
| DME <sup>b</sup>                                 | 6                               | 28.9                     | 0.915            | 0.90 |  |
| SNG                                              | 4                               | 49.85                    | 0.825            | 0.90 |  |
| Ammonia                                          | 1.5                             | 18.56                    | 0.870            | 0.90 |  |

 $^{\rm a}$  The reaction product of the FT synthesis is assumed to be -(CH\_2)\_n-.

<sup>b</sup> The reason for the higher xLHV of methanol compared to DME is that methanol is liquid at standard conditions (reduced LHV).

Tremel et al., Int. J. H2 Energy (2015)

- For 44 million MT of concentrated CO<sub>2</sub> annually
  - 6 MMT of H<sub>2</sub> will be needed to produce FTD or DME via synthesis

 $\checkmark$  CO<sub>2</sub>/H<sub>2</sub> mole ratio = 1:3 (two H<sub>2</sub> moles to take out O<sub>2</sub>)

- 1 MMT of H<sub>2</sub> will be needed to produce FTD via electrochemical reduction of CO<sub>2</sub>
  - $\checkmark$  CO<sub>2</sub>/H<sub>2</sub> mole ratio = 2:1



#### STEEL MAKING AND POTENTIAL HYDROGEN DEMAND – Accomplishment

- 106 million MT of steel consumed in the U.S. in 2017<sup>1</sup>
  - ✓ 81 MMT produced (68% electric arc [EA], 32% BF)<sup>1</sup>
    - Scrap constitute 15% of BF feed and almost all EA feed
    - DRI feedstock enables higher quality steel than scrap metal feedstock
    - > 1,100 MT (Only 0.1%) in U.S. produced via DRI<sup>1</sup>
  - ✓ 35 MMT imported<sup>2</sup>
- Use of scrap metal can reduce quality of steel produced by EA
- DRI can provide up to 100% of the feed to EA furnace to enable higher steel quality
- 430 kg of coke is required to produce 1 MT of hot iron in blast furnace (BF)
  - ✓ DRI reduces  $CO_2$  emissions by approximately 35% compared to BF
  - ✓ H<sub>2</sub> for DRI virtually eliminates CO<sub>2</sub> emissions from the iron-making process

- 1. USGS, 2017. Iron and Steel Statistics. January
- 2. Global Steel Monitor

