Hydrogen Storage System Modeling:

Public Access, Maintenance, and Enhancements

Team: Matthew Thornton (PI), Sam Sprik, Kriston Brooks, & David Tamburello

DOE Hydrogen and Fuel Cells Program
2019 Annual Merit Review and Peer Evaluation Meeting
April 29, 2019

Project ID # ST008

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Start: October 1, 2015

• End: September 30, 2021*

• 60% FY19 Complete (as of 5/1/19)

Budget

Total Project Funding: \$1,375,000*

o FY16 Funding: \$336,000

FY17 Funding: \$389,000

FY18 Funding: \$375,000

o FY19 Funding: \$275,000

Barriers

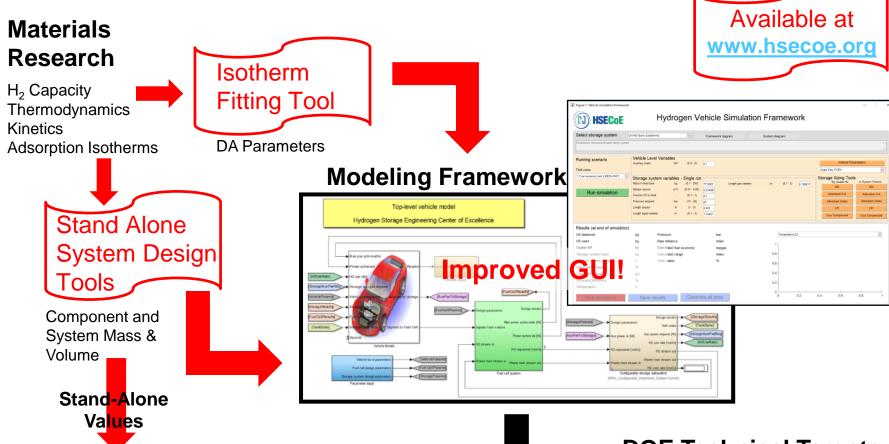
- A. System Weight and Volume
- **B.** System Cost
- C. Efficiency
- E. Charging/Discharging Rates
- I. Dispensing Technology
- K. System Life-Cycle Assessment

Partners

^{*}Project continuation and direction determined annually by DOE.

Relevance

Collaborative effort to manage, update, and enhance hydrogen storage system models developed under the Hydrogen Storage Engineering Center of Excellence (HSECoE).


- Transfer engineering development knowledge from HSECoE on to future materials research.
- Manage the HSECoE model dissemination web page.
- Manage, update, enhance, and validate the modeling framework and the specific storage system models developed by the HSECoE.
- Develop models that will accept direct materials property inputs and can be measured by materials researchers.
- <u>Ultimate Goal</u>: Provide validated modeling tools that will be used by researchers to evaluate the performance of their new materials in engineered systems relative to the DOE Technical Targets.

Relevance – Barriers Addressed with Models

Barriers	Model Addressing Barrier
A. System Weight and Volume	System Estimator
B. System Cost	Tank Volume/Cost Model
C. Efficiency	Framework Model - On-Board Efficiency - Fuel Economy
E. Charging/Discharging Rates	Framework Model - Drive cycles
I. Dispensing Technology	Framework Model - Initial and Final System Conditions
K. System Life-Cycle Assessment	All Models

Relevance – Focus: Improve Model Utilities for Materials

Estimated Gravimetric & Volumetric Capacity

DOE Technical Targets

Gravimetric & Volumetric Capacity
Durability & Operability
Operating Temperature and Pressure
On-Board Efficiency
Charging/Discharging Rates
Startup
Refueling

Approach – Modeling Tools Available / In Progress

Finite Element Models:

Metal Hydride (MH)

SRNL SRNL

Adsorbent (AD) – HexCell and MATI

Tank Heat and Mass Transfer Models

Stand-alone System Design Tool:

Adsorbent (AD)

SRNL

New Mass or Volume-Based Tool

New D-A or UNILAN Isotherm-Based Tool

Chemical Hydrogen (CH)

PNNL

New Mass or Volume-Based Tool

Metal Hydride (MH)

PNNL

SRNL

New Mass or Volume-Based Tool

Compressed/Cryo-Compressed H₂

Framework Model with:

Physical Storage

Compressed/Cryo-Compressed H₂

Chemical Hydrogen (CH)

Adsorbent (AD)

Metal Hydride (MH)

UTRC/NREL

SRNL/NREL

PNNL/NREL

SRNL/NREL

PNNL/NREL

Estimate performance of light-duty vehicles with four drive cycles for each storage system

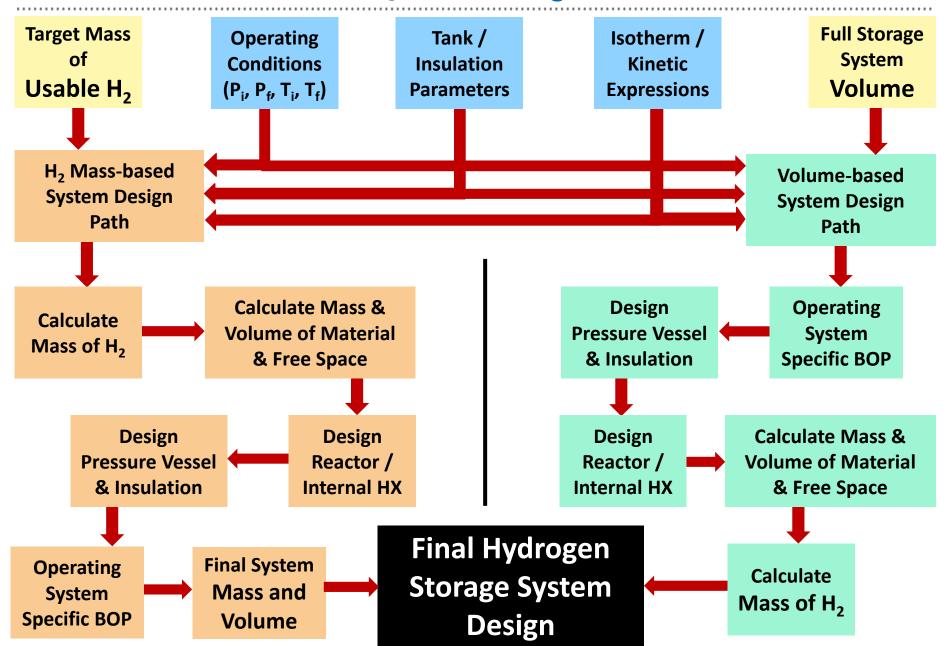
Updating for UNILAN Isotherm Theory

Updated to allow user input

Additional Tool / Models:

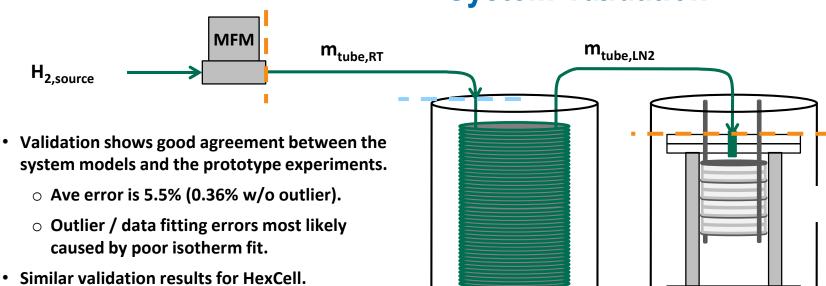
MH Acceptability Envelope
 SRNL

Tank Volume/Cost Model PNNL


AD Isotherm Fitting Tool SRNL

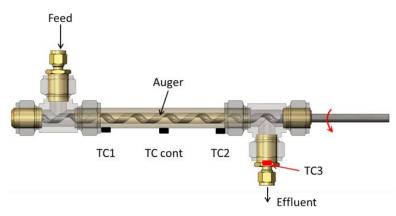
Accomplishments and Progress – Design Tools Estimate All Input Parameters Needed to Design a Hydrogen Storage System

Capabilities:

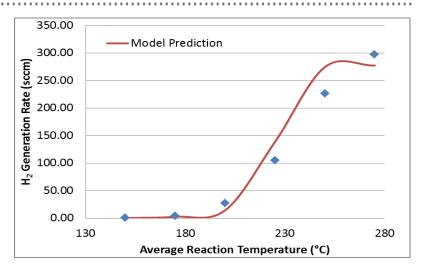

- All hydrogen storage methods: adsorbents, metal hydrides, chemical hydrogen storage, and pure hydrogen storage
- Available as a stand-alone executable or as part of the full vehicle framework within MATLAB / Simulink
- Material-specific property inputs measured by materials researchers to design material-specific storage systems
- · Validated design tools against known storage systems.
- Usable-H₂ mass based and full storage system volume based capabilities for each design tool
- Multiple kinetics / isotherm expressions available for each storage method.

Accomplishments and Progress – Design Tools Flowchart

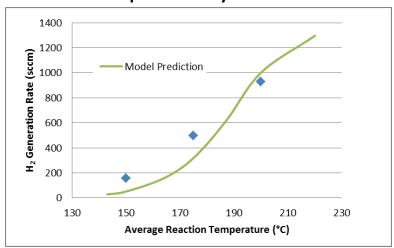
Accomplishments and Progress – MATI Adsorbent Storage


System Validation

Op. Conditions	H _{2,in}	$\mathbf{m}_{tube,tot}$	m _{proto,exp}	m _{proto,model}	% Diff
(1.07 bar, 83.7 K) → (60.0 bar, 91.3 K)	86.85 g	41.69 g	45.16 g	45.45 g	0.639%
(1.09 bar, 83.7 K) → (100.0 bar, 84.5 K)	140.54 g	72.56 g	67.99 g	68.09 g	0.158%
(5.05 bar, 84.0 K) → (60.5 bar, 106.6 K)	59.55 g	28.51 g	31.04 g	24.57 g	-20.86%
(5.23 bar, 83.2 K) → (100.2 bar, 102.4 K)	107.24 g	58.10 g	49.14 g	49.00 g	-0.285%


Accomplishments and Progress – Chemical Hydrogen

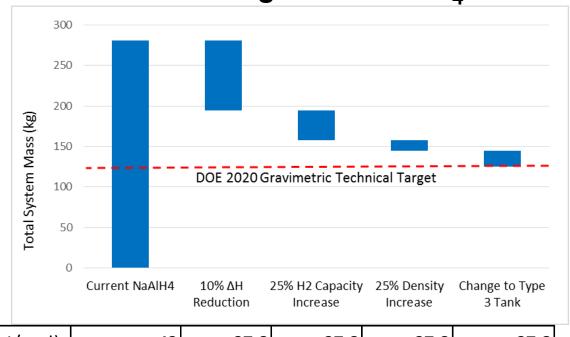
Storage Model Validation



Flow-through reactor design used to validate the model

Calido Landino	Reactor Residence Time	Auger	Average Reaction	Measured Alane Conversion	Model Conversion Values
Solids Loading	kesidence iime	Speed	Temperature	Conversion	values
(wt%)	(min)	(rpm)	(°C)	(mol/mol)	(mol/mol)
50%	7.6	12	185	16%	11%
50%	7.6	40	185	11%	4.6%
50%	4.2	12	187	7%	6.6%
50%	7.6	12	214	88%	80%
50%	7.6	40	214	74%	53%
50%	4.2	12	214	38%	49%
20%	6.8	40	188	10%	7.1%
20%	6.8	40	212	38%	50%
20%	6.8	40	235	84%	100%
60%	7.2	12	180	5%	6.5%
60%	7.2	12	194	20%	21%
60%	7.2	12	208	48%	55%

Comparison of model predicted hydrogen flow rate to that measured experimentally for 20 wt% alane slurry

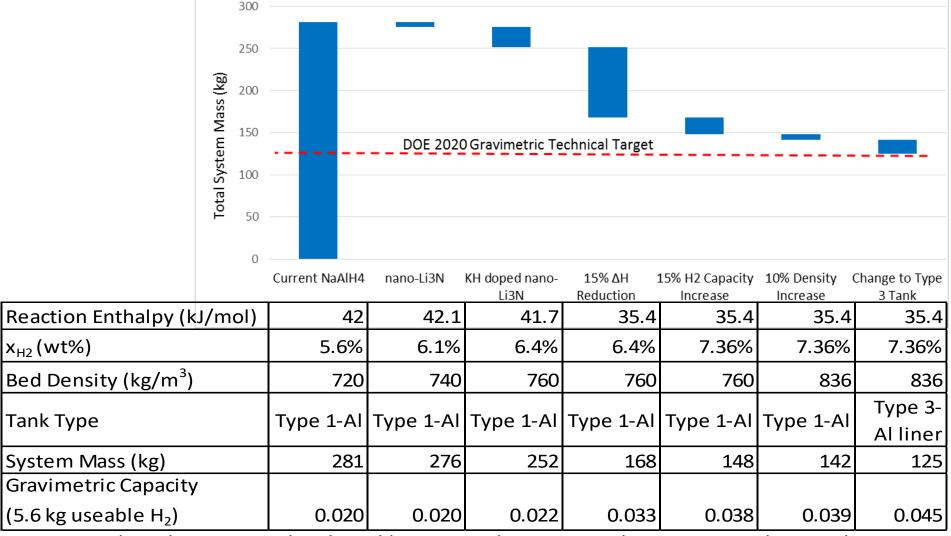


Comparison of model predicted hydrogen flow rate to that measured experimentally for 20 wt% AB slurry

Accomplishments and Progress – Model Improvements

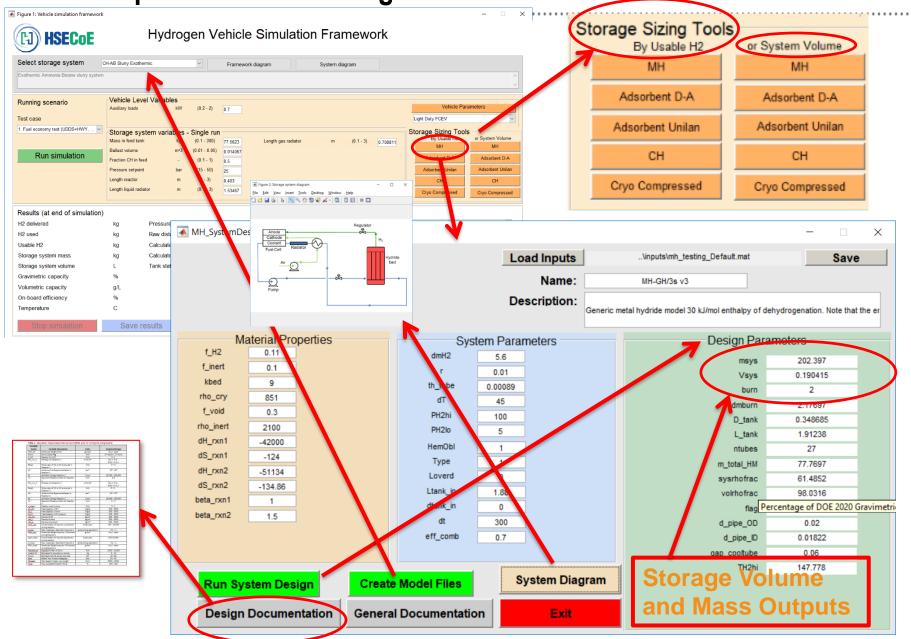
Original Model	Updated Model			
Adsorbent Model				
BOP for cryogenic operation only	BOP options for room temperature, cold, and cryogenic operations			
Insulation thickness hard coded to 1-inch	Insulation thickness is user controlled			
LN ₂ tank cooling channel always included	LN ₂ tank cooling channels user controlled			
D-A Isotherm Model used only	D-A and UNILAN Isotherm Model options			
MOF-5 Material Properties hard coded	User defined Adsorbent Material Properties (with MOF-5 default values)			
Mass of usable H ₂ is the starting point of the calculation	Mass of usable H ₂ or Maximum total storage system volume starting point			
Metal Hyd	ride Model			
Single Step Irreversible Reaction	Single Step Irreversible or Two Step Reversible Models Selectable			
Hard coded reaction rate and enthalpy (30 kJ/mol)	Reaction parameters and material properties as inputs			
Mass of usable H ₂ is the starting point of the calculation	Mass of usable H ₂ or Maximum total storage system volume starting point			

Accomplishments and Progress –One Possible Pathway to Meet DOE Gravimetric Target for NaAlH₄

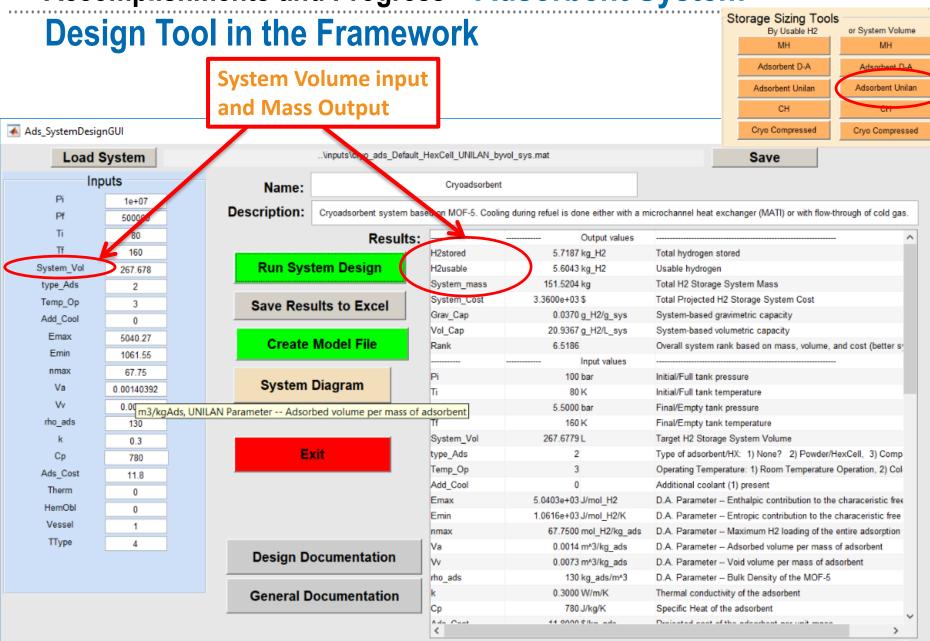


Reaction Enthalpy (kJ/mol)	42	37.8	37.8	37.8	37.8
x _{H2} (wt%)	5.6%	5.6%	7.0%	7.0%	7.0%
Bed Density (kg/m³)	720	720	720	900	900
					Type 3-Al
Tank Type	Type 1-Al	Type 1-Al	Type 1-Al	Type 1-Al	liner
System Mass (kg)	281	194	158	145	125
Gravimetric Capacity					
(5.6 kg useable H ₂)	0.020	0.029	0.035	0.039	0.045

One possible set of material improvements to meet DOE gravimetric target: 1) reduce ΔH_{rxn} so that fuel cell heat can be used, 2) increase H_2 capacity and 3) density and 4) Type 3 tank


Accomplishments and Progress –Evaluate new

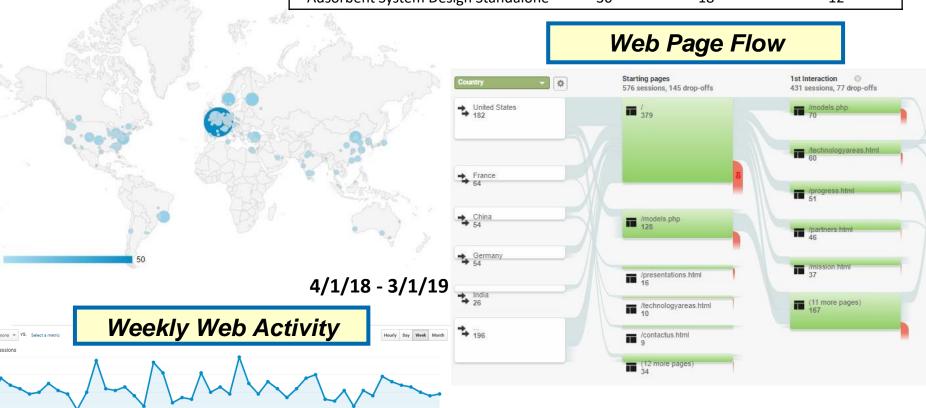
materials relative to DOE Technical Targets



6 nm KH doped nano-Li₃N developed by Dr. Stavila: Requires larger ΔH_{rxn} reduction, but smaller increases in H₂ capacity and density than NaAlH₄ to meet the DOE Gravimetric target

Accomplishments and Progress – Vehicle Framework GUI

Accomplishments and Progress – Adsorbent System



Accomplishments and Progress – Model Downloads and Web

Analytics

Since **Totals MODEL** Downloaded **Total AMR2018 AMR2018** H₂ Storage Tank Mass and Cost Model 194 241 47 MHAE Model 66 60 6 MHFE Model 107 92 15 Vehicle Simulator Framework Model 27 165 138 CH System Design Standalone 18 31 13 Adsorbent System Design Standalone 30 18 12

Global Interest

Collaboration and Coordination

Organization	Relationship	Туре	Responsibility
NREL	Team Member	Federal Lab	Update Website and Framework
SRNL	Team Member	Federal Lab	Adsorbent and Compressed Gas Modeling
PNNL	Team Member	Federal Lab	Chemical Hydrogen and Metal Hydride Modeling
Ford	Consultant	Industry	Beta Testing, Fuel Cell Model, Adsorption Data
RCB Hydrides LLC	Consultant	Industry	Beta Testing, H ₂ Storage Expertise
University of Michigan	Material Developer	Academia	Adsorption Data
University of California Berkeley	Material Developer	Academia	Adsorption Data
Purdue University	Material Developer	Academia	Chemical Hydrogen Storage Reaction Rate
HyMARC	Material Research	Federal Lab / Collaboration	Material development

Proposed Future Work – FY19 Milestones and Next Steps

Del	iverable	Due
FY19-Q1	Update storage system model documentation for all web available HSECoE models and post new Framework Model versions, including MH Stand-alone design tools and Adsorbent volume-based design tool.	Completed
FY19-Q2	Provide updates on web portal activity – web site hits and time on site, web site use locations, and model downloads	Completed
FY19-Q3	SMART Milestone: Standalone Fully-Excel Model. Convert all existing standalone executable models to fully MS Excel (FMSE) models using VBA. These FMSE models will include both mass- and volume-based formulations of the Adsorbent, MH, and CH Storage stand-alone models. The existing executable models will be used for validations with an error of less than 2% between versions.	In Progress
FY19-Q4	Two to three Journal Article Submissions: one related to the ideal adsorbent isotherm shape, one on the adsorbent stand-alone system design tool, and one on the metal hydride stand-alone model.	9/30/2019
Future	Update and modernize www.HSECoE.org to improve its value and usability.	In Progress
Future	Work with material-based H_2 storage developers to apply models to their materials	In Progress
Future	Expand the usability of the analysis tools to reverse engineer optimum material properties to meet DOE technical targets.	Open
Future	Expand model to other vehicle platforms (medium and heavy duty trucks, forklifts, buses, etc.)	Open

Technology Transfer Activities – Updated HSECoE Model Website

HSECoE website: http://hsecoe.org/

(under development)

Summary

Relevance	 Provide materials based hydrogen storage researchers with models and materials requirements to assess their material's performance in an automotive application.
Approach	 Improve framework utility by bridging the gap between the information generated by the materials researcher and the parameters required for the framework model.
Technical Accomplishments and Progress	 Developed system design tools for MH, CH, and Adsorbents that are both H₂ mass- or system volume-based. System design tools used with framework GUI and as stand-alone executables. Developed a system design tool based on multiple kinetics expressions / isotherm theories. Improved website and model accessibility.
Collaborations	 Project team includes NREL, SRNL, and PNNL. Consultants from industry participate in team meetings and provide input. Material developers from academia provide new material properties.
Proposed Future Research	Expand the use of models by demonstrating their utility with other storage materials and vehicle class options.

Responses to Previous Year Reviewers' Comments

2018 AMR Comment

- 1) This is a strong technical team with diverse expertise; hence, there are few weakness associated with the team's ability to develop and deploy the analytical tools. The primary limitation is the absence of validation results and feedback from outside users.
- 2) Validation of the models continues to remain a dominant issue. Greater emphasis is needed on a more detailed description of the approach for validating the models and design tools.
- 3) Correlation data between models and real life are desired to validate the models. Having more data on the website showing this correlation would be desirable.

The main project weakness is that the models are being developed but are not being utilized to make projections or develop strategies for closing the gap to the DOE hydrogen storage system targets. Also, the validation of the models should be further explained to allow researchers to gain confidence in the results.

2019 Response/Approach

The models have been validated against fundamental material data measurements and prototype system data where available. In addition, several hydrogen model system design components have been validated against natural gas or similar system components. As no full-scale MH, CH, or Adsorbent hydrogen storage systems have been built, it is difficult to find full-scale data to use. Citations for papers outlining the validations efforts are available on www.hsecoe.org.

The primary purpose of this project is to assist DOE and the research community in closing the Technology Target Gaps. The intent moving forward is to work more closely with the materials development community to more efficiently meet this objective.

As for the comment on validation, please see the response above.